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Abstract
Dementia is a growing problem as our society ages, and detection
methods are often invasive and expensive. Recent deep-learning
techniques can offer a faster diagnosis and have shown promis-
ing results. However, they require large amounts of labelled data
which is not easily available for the task of dementia detection.
One effective solution to sparse data problems is data augmenta-
tion, though the exact methods need to be selected carefully. To
date, there has been no empirical study of data augmentation on
Alzheimer’s disease (AD) datasets for NLP and speech process-
ing. In this work, we investigate data augmentation techniques
for the task of AD detection and perform an empirical evaluation
of the different approaches on two kinds of models for both the
text and audio domains. We use a transformer-based model for
both domains, and SVM and Random Forest models for the text
and audio domains, respectively. We generate additional samples
using traditional as well as deep learning based methods and
show that data augmentation improves performance for both the
text- and audio-based models and that such results are compara-
ble to state-of-the-art results on the popular ADReSS set, with
carefully crafted architectures and features1.
Index Terms: dementia detection, data augmentation, speech.

1. Introduction
Dementia is the common term to describe a decline of cognitive
abilities, such as memory, problem-solving or language that
can severely impact an individual’s communication abilities and
everyday life in general. This condition, most often caused by
Alzheimer’s disease (AD), affects close to 60 million people
and is the 7th leading cause of death, globally [1]. Fortunately,
there has been a great focus across different fields not only to
develop treatment for the condition but also to detect it, as an
early diagnosis is key to help individuals to plan their future.

Recent challenges such as ADReSS and ADReSSo brought
the focus to using speech and/or transcripts for AD detection
[2, 3]. Detecting dementia, especially in its early stages, is a com-
plex task which requires identifying subtle changes to semantics,
vocabulary, or sentence-level structure. Information from audio
data can provide beneficial information, e. g., about pauses or
speech rate [4]. Subsequent work explored large pre-trained
models and various DNN embeddings to extract fine-grained rep-
resentations for text and audio features and achieved good results
on the challenge held-out test set, considering the limited data
available [5, 6, 7, 4, 8, 9]. Linguistic approaches have shown
to be the most discriminative, even with simple models such as
SVM. However, current state-of-the-art models implement hand
picked features and tailored feature engineering techniques [10].

∗Authors contributed equally.
†Work done outside of Amazon.

1The code is available at https://github.com/hl-anna/DA4AD

Audio classifiers benefit greatly from pre-trained embeddings
such as the one introduced by [11], which have the advantage of
being automatically extracted, compared to designed feature sets
such as ComParE or eGeMAPS [12].

Collecting quality data on AD, be it transcripts or audio
samples, can be difficult. Patients are hard to access, have to
be evaluated for their mental state and the sessions have to be
properly recorded and transcribed. Machine learning with lim-
ited data is a common challenge across tasks and domains, as
limited amount of training data hinders the models’ ability to
generalise well and train properly. Some approaches address-
ing this problem explore different architectures and ensemble
models [13, 8, 14, 15], feature engineering [16, 17], and data
augmentation techniques [18, 19, 20, 21]. In this work, we focus
on the latter. Data augmentation has been quite successful in im-
age processing tasks, as one can perform many transformations
without changing the object and label of the images. Although
some of those techniques can be transferred to speech processing,
they need to be carefully chosen for the task at hand and take
into account the time dimension, too. Augmenting text data is
more challenging, as it is highly sensitive to changes and one
must be careful not to affect key label-specific characteristics.
Nevertheless, several techniques have been explored by [22]
and [23] in surveys which cover various tasks related to NLP or
speech processing, extensively. Given the multi-modal nature
of AD detection, suitable augmentation strategies are required
for both audio and text. Individual text augmentation techniques
have been applied in AD detection work [18, 21, 20], but no
work offers an overview of augmentation strategies.

In this paper, we aim to expand the scope of previous sur-
veys on data augmentation and evaluate label preserving data
augmentation techniques on the task of Alzheimer’s disease de-
tection for both NLP and speech processing. We examine a total
of 17 approaches (7 for text, 10 for audio) and evaluate them
on baseline and SOTA models. We work with the two domains
separately, as well as with a fusion of both. Our experiments
show that the selected data augmentation methods were able
to preserve the class labels and that augmentation itself is ef-
fective in improving the model’s generalisation abilities on the
ADReSS dataset. This has been shown using neural-based and
more traditional models, on both the text and audio domains.
We believe that this work can contribute to the field and offer an
inexpensive way to improve AD detection methods in the future.
Our contributions are as follows:

1. We empirically evaluate text and speech data augmenta-
tion techniques for the task of dementia detection.

2. We analyse the level of label preservation for each aug-
mentation.

3. We achieve performance on par with state-of-the-art
model for both text and audio domains via data augmen-
tation.
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2. Data Augmentation Strategies
2.1. Text Augmentations

2.1.1. Noise

Noise can be introduced by means of random deletions, inser-
tions, or substitution at character, word, or sentence level. For
the text domain, we employ three noise injection methods: sen-
tence deletion (SD), easy data augmentation (EDA) [24], and
Mixup [25]. For the SD approach, we delete one or more ran-
domly selected sentences from each transcript. We found that
removing one to four sentences (at random) yields the best re-
sults, so the average SD operation reduces a transcript by 10 %.
The Mixup approach splits a transcript into two halves and swaps
these with a different sample within the same class. EDA ran-
domly replaces, inserts, or deletes words within a document.
This approach can affect the semantics or introduce grammar
mistakes. We follow the EDA implementation from the original
paper and set α = 0.05.

2.1.2. Lexical substitution

An intuitive approach to augmenting data while preserving the
label is to substitute words with their synonyms. A simple option
is to replace words with their WordNet [26] synonyms or hyper-
onyms from the Knowledge Graph. The words to substitute can
be sampled at random, using TFIDF-weights or by analysing the
rate of change when the word is deleted. However, this is a tricky
operation in case of AD detection. Words might be substituted
by alternatives causing the sample to loose its discriminative fea-
tures, for example by going from familiar language to elevated
vocabulary. Some works use pre-trained embeddings and look
for close words given the feature space, using geometric dis-
tances. These approaches suffer from the same issues. To tackle
this limitation, one can use contextual augmentation, i. e., use
language models to replace words given a sentence and learnt
priors for each label [27]. In this work, we implemented a ver-
sion of contexutal augmentation using the NLPAug library [28],
based on the RoBERTa model. We set p = 0.1 and top_k = 20,
i. e., replacing 10 % of words by picking randomly for the top
20 alternatives.

2.1.3. Paraphrase

Paraphrasing consists in rewording or changing the structure
of a document while maintaining its original meaning. Earlier
approaches include statistical and rule-based models or selecting
sub-sentences from a pool of stored templates. More recently,
neural models have been adopted to generate paraphrases di-
rectly in an end-to-end fashion. A sub-task of paraphrasing is
back-translation (BT), which creates new samples by translating
text from one language to another and back to the original one,
thus exploiting differences in structure and vocabulary across
languages. Similarly, text summarisation aims to restructure
sentences in a concise way. This approach is less desirable
diversity-wise, as the target space is more limited. We split each
document on sentence level and run the pre-trained paraphrase
model Pegasus [29], a model with 223M parametres, to gener-
ate paraphrases of length n = 60 tokens and with temperature
t = 1.

2.1.4. Text Generation

Generative models are a popular approach to data augmentation
for text. Rule-based text generation methods have now been sup-
planted by DNNs, sequence-to-sequence, and transformer-based

methods with large models trained on even larger datasets. One
such model is OpenAI’s GPT-2 [30], which we use to perform
text generation. GPT-2 is pretrained on the WebText corpus –
a large collection of internet blogs, posts, and pages, but can
be finetuned with a relatively small set of samples to adapt the
feature distribution. We use Hugging’face’s2 model with 117M
parametres. The model is finetuned on the entire training set,
conditioned with the sample label class. The label is then used
as a prompt for the model at inference time.

2.2. Audio Augmentations

2.2.1. Standard transformations

Standard transformations can be defined as a function g applied
on the sample x at time step t such that x′(t) = g(x(t)). We
apply these transformations via the nlpaug3 python package.
Noise addition is one of the simplest transformations. The noise
ϵ is usually sampled from a Gaussian distribution N(µ, σ), in
our case N(0, 1) ∗ 0.002, and is applied at step t either in the
time or frequency domain. The new sample can be defined as
x′(t) = x(t) + ϵ.
Time stretching changes the speed of a signal by a factor of
α, without changing the pitch. For α < 1, the signal is slowed
down and lengthened and sped up for α > 1.
Pitch shifting perturbs the pitch by n fractions of an octave. The
signal is passed through a Short-Term Fourier Transform (STFT)
to obtain the spectrogram in the frequency domain to apply the
change to the pitch, without changing the length or speed of the
signal. We adjust the pitch by a scale factor in (−10, 10).
Time shift adds padding on the left or the right of a signal. We
shift time of the whole audio by a duration of 0.5 seconds.
Loudness shift increases or decreases the magnitude of a sig-
nal x by β DB or by scaling the signal by a factor α s. t.
x′(t) = αx(t), where the volume is decreased for α < 1. We
adjust loudness of each sample by a scale factor within (0.3, 3).
Normalisation of the signal can be performed given minimum
and maximum amplitudes or by standardising it. We simply
normalise the signal by dividing it by the maximum amplitude.
Time masking consists in masking consecutive time bands on
a log Mel-spectrogram, where t ϵ[t0, t0 + t] is sampled from a
uniform distribution U(0, T ), t0 ∼ U(0, T − t), and T is the
maximum length of masking steps. We apply masking operation
with a coverage of 0.3.
Frequency masking applies a mask on consecutive frequency
bands on a log Mel-spectrogram, where f ∼ U(f0, f0 + f) and
f0 ∼ [0, V − f ], where V is the maximum number of Mel-
frequency channels. We implement two strategies that combine
several transformations: Random and SpecAugment. The Ran-
dom strategy selects a transformation for each sample at random
and SpecAugment combines time warping, frequency, and time
masking on the log Mel-spectrograms [31].

2.2.2. Vocal Tract Length Perturbation (VTLP)

Vocal Tract Length Perturbation (VTLP) operates on the log-
Mel-spectrogram itself [32]. Similarly to time warping, VTLP
performs warping on a frequency f . We apply a VTLP operation
on the whole audio with a scaling factor of (0.5, 3).

2https://huggingface.co/gpt2
3https://github.com/makcedward/nlpaug
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2.2.3. Generative Models

Deep neural networks are now dominating generative models
such as auto-encoders, generative adversarial networks (GANs)
or sequence-to-sequence models such as LSTM networks. We
perform zero-shot voice conversion using a FragmentVC [33]
pre-trained model4. It performs better at speaker identity conver-
sion than popular state-of-the art AutoVC [34] while preserving
prosody and durations, which is actually desirable in our case to
preserve class-specific style.

3. Experiments & Results
3.1. Datasets

3.1.1. ADReSS and Dementiabank

We work with two datasets, the ADReSS dataset [2]5 and Demen-
tiabank.6. Both consist of recordings of a Cookie theft picture
description task from individuals diagnosed with various stages
of dementia. The datasets also contain manual transcriptions
of the samples with dysfluency annotations, and the ADReSS
set is a subset of Dementiabank. The speakers in the ADReSS
set are American and have been selected to balance for gender
and age, and they split evenly into control (HC) and dementia
(AD) groups (54 train and 24 test for each class, total of 156
samples). Dementiabank has three times as many samples, but is
imbalanced, lacks a fixed test set and some samples contain a lot
of noise. The main focus of this paper is thus on the ADReSS
set, which is of better quality and allows for an easy comparison
of results with other works. However, we also examine the effect
of augmentation on a larger dataset such as Dementiabank.

3.1.2. Preprocessing

Transcripts from both datasets were annotated using the CHAT
coding system which includes POS tags and grammatical depen-
dencies but also pauses and other dysfluencies. We read each
CHAT file using the python library pylangacq 7. We retain
the cleaned sentences uttered by the participant, with no addi-
tional dysfluency annotation. For the audio recordings, we use
the normalised, noise reduced wavefiles sampled at 44 kHz. We
split them into chunks of 10s with a stride of 2s and apply the
data augmentation either on the signal or spectrograms computed
using the librosa 8 Python library.

3.2. Models

3.2.1. Text-based detection models

To perform the linguistic classification task, we reimplement [4,
6] using a pre-trained BERT model on the transcripts. We use
the base size model (12 layers) with the following patametres:
learning rate of 2e-5, 8 epochs, and input length limit of 256
tokens. We feed the whole document as a datapoint, keeping
the dysfluencies annotations. To focus on text only, we ignore
the pauses extracted for the audio samples. The BERT model is
widely used in the field of NLP and the authors from [4] have
achieved SOTA results on the ADReSS Challenge 2020. As a
more traditional approach, we also implement an SVM with an

4https://github.com/yistLin/FragmentVC
5The dataset is accessible upon request at

http://www.homepages.ed.ac.uk/sluzfil/ADReSS/ and is governed by the
Creative Commons CC BY-NC-SA 3.0 license.

6https://dementia.talkbank.org/
7https://pylangacq.org/
8https://librosa.org/doc/latest/index.html

RBF kernel with gamma = 0.01 and C = 1. We use TF-IDF
features as input.

3.2.2. Acoustic-based detection models

The audio classifier we use in our experiments is the Audio Spec-
trogram Transformer (AST) [11], which adapts the transformer
architecture for audio. We extract Mel spectrograms as input to
the AST model. We tune the model for 2 epochs, using a learn-
ing rate of 1e-6 and the Adam optimiser. Similarly as for text,
we also implement a simpler baseline which is a Random Forest
(RF) model. We extract eGeMAPS [12] sets of features to train
the RF model, which has been shown to be a better optimised
set of features compared to ComParE on the DementiaBank
dataset [2]. The RF model is trained with 100 trees.

3.2.3. Fusion

Our fusion model consists of the three best performing augmenta-
tion approaches at cross-validation time. We perform a majority
vote to predict the final label and report the result in Table 3.

3.3. Experiment Setup

All models are trained on one NVIDIA Tesla K80, 16 GB RAM;
all code is written in Pytorch 1.10.0+cu111. For all models, we
report the accuracy as well as the sensitivity. Given the nature
of the task, we believe it is important to put emphasis on the
ability of models to detect a case of AD rather than just the ac-
curacy. We perform 10-fold and 5-fold cross validation for text
and audio, respectively, and report the average accuracy across
5 different seeds. Implementation details are available in our
repository. We further evaluate the augmentation approaches in
terms of label preservation using a model trained only on the
original data. We then measure the accuracy for both classes.
We also compute the KL-divergence on extracted features and
the Mel-spectrogram distortion between the original and aug-
mented samples for audio. For text, we compute the Levenshtein
distance, semantic distance, and type token ratio (TTR). For se-
mantics, we extract sentence embeddings with the Huggingface
model all-mpnet-base-v29 and compute the cosine distance.

3.4. Results

The results of our experiments evaluated on the ADReSS dataset
are displayed in Tables 1 and 2 for text and audio, respectively,
and a comparison to the challenge baseline as well as state-of-
the-art results can be found in Table 3. We can see that while
DNN-based approaches to augmentation are an effective way
to improve model performance, some traditional and less com-
putationally expensive methods work comparably well. For the
text augmentation, paraphrasing methods showed the best re-
sults, whether it is by Back-translation (BT), which achieves the
highest score of 84% for Russian (RU) and 85% for German
(DE) for BERT and SVM respectively, or by using the Pega-
sus model. However, simpler noise injection methods such as
EDA and Mixup are not far behind in terms of the performance
increase. Generally, the augmentations reduced overfitting for
the BERT Model while the SVM tends to overfit for almost all
techniques. However, we can observe that the introduction of
new samples improved both models’ generalisation abilities via
Text generation for text and with FragmentVC for audio, with
second best results for AST (73%) and best for RF (69%).

9https://huggingface.co/sentence-transformers/all-mpnet-base-v2
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Similarly as for text, while individual traditional methods
only offered improvement in some cases for the audio domain,
the approach of Random ensemble performed just as well as
a more complex DNN-based method of voice conversion. We
can also see that the results of our experiments are often con-
siderably higher for the test set than for cross-validation. While
this might partly be simply due to the small size of the dataset
we work with, it also shows the role of data augmentation as a
regularisation method. We also note the fusion of the top-3 best
models in Table 3 and achieve the best results with 86%.
We also evaluate the techniques on the DementiaBank, but we
did not notice considerable improvement on the model’s perfor-
mance. We attribute this to the more noisy nature of the dataset
and its larger size.

BERT SVM BERT SVM

Method CV Test CV Test Test Sensitivity

None .80 (.04) .78 (.06) .83 (.00) .81 (.00) .81(.04) .71 (.00)

SD .74 (.01) .77 (.02) .83 (.00) .81 (.00) .68 (.06) .75 (.00)
Mixup .79 (.04) .82 (.04) .85 (.00) .75 (.00) .79 (.06) .67 (.00)
EDA .80 (.02) .83 (.03) .84 (.00) .79 (.00) .81 (.04) .71 (.00)
Paraphrasing .82 (.05) .81 (.03) .84 (.00) .81 (.00) .78 (.04) .75 (.00)
Text Gen. .71 (.02) .81 (.05) .77 (.00) .81 (.00) .84 (.07) .75 (.00)
Context Aug. .80 (.05) .80 (.05) .83 (.00) .77 (.00) .80 (.06) .67 (.00)
BT (DE) .82 (.02) .84 (.02) .86 (.00) .81 (.00) .81 (.06) .75 (.00)
BT (RU) .80 (.03) .82 (.01) .86 (.00) .85 (.00) .83 (.06) .79 (.00)

Table 1: Accuracy and test Sensitivity results for Text augmenta-
tions on the ADReSS set, with standard deviation in parentheses.
For the SVM model, once parameters are fixed, changing the
random seed does not affect results, hence the standard deviation
is zero. SD = random sentence deletion, BT = back-translation
from either German (DE) or Russian (RU). Best results for each
model are highlighted.

AST RF AST RF

Method CV Test CV Test Test Sensitivity

None .62 (.13) .70 (.03) .58 (.14) .67 (.02) 1.00 (.00) .79 (.00)

Random .63 (.09) .74 (.03) .79 (.12) .68 (.02) .92 (.08) .79 (.00)
Masking .56 (.11) .70 (.04) .69 (.16) .67 (.02) .98 (.02) .75 (.00)
Loudness .64 (.07) .70 (.01) .78 (.14) .69 (.02) .83 (.13) .79 (.00)
Noise .62 (.17) .71 (.04) .69 (.15) .64 (.01) .83 (.04) .79 (.00)
Pitch .61 (.13) .72 (.02) .68 (.15) .64 (.02) .83 (.00) .88 (.00)
VTLP .61 (.07) .70 (.02) .79 (.13) .67 (.02) .79 (.04) .75 (.00)
Shift .59 (.11) .72 (.02) .79 (.14) .66 (.02) .79 (.04) .75 (.00)
Speed .63 (.07) .70 (.02) .80 (.10) .64 (.02) .81 (.02) .75 (.00)
Normalisation .56 (.07) .72 (.03) .76 (.11) .68 (.01) .79 (.04) .83 (.00)
SpecAugment .56 (.10) .70 (.02) .53 (.07) .67 (.02) .90 (.02) .79 (.00)
FragmentVC .62 (.04) .73 (.04) .54 (.04) .69 (.03) .94 (.06) .88 (.00)

Table 2: Accuracy and test Sensitivity results for Audio augmen-
tations on the ADReSS set, with standard deviation in parenthe-
ses. The models used are a Random Forest (RF) and an Audio
Spectrogram Transformer (AST). VTLP = Vocal tract length per-
turbation. The best results for each model are highlighted.

We note the label preservation performance as well as di-
vergence from the original data distribution methods in Table
4. Methods with the highest label preservation scores tend hurt
rather than benefit the model performance, suggesting that in
those cases the augmented samples remain too similar to the
original ones and the model ends up overfitting. At the same
time, methods that diverge too much are likely to change key
discriminative features of AD, also leading to poor performance.
We can see that while noise injection and generative methods for
audio have a considerably higher divergence score than the other
traditional methods, they still have a beneficial effect on train-
ing. Comparing Table 1 and Table 4, we can see that although
DNN-based approaches lower the label preservation, the perfor-

Model Features Accuracy

Baseline LDA∗ [2] Text .75
LDA∗ (ComParE features) [2] Audio .63

SOTA ERNIE (ensemble) [4] Text .85
Music-Linear-BOW [8] Audio .74
Fusion [8] Audio + Text .90

Our models SVM (BT RU) Text .85
AST (Random) Audio .74
Fusion: AST (Random) + SVM (BT RU) + BERT (BT DE) Audio + Text .86

Table 3: Comparison between our systems and SOTA on the
ADReSS dataset. There are no baseline models or easily compa-
rable work for the Dementiabank dataset. For our models, the
model name and augmentation method used is provided. The
best result is highlighted for each domain.
∗LDA = Linear discriminant analysis.

mance on the test set and cross-validation sets indicate that the
introduced noise decrease the models overfitting. In particular,
Text generation is the most disruptive in terms of all metrics but
in fact improves on the accuracies and test sensitivity for both
BERT (81% & 84%) and SVM (81% & 75%). Backtranslation
seems to strike the right balance between deviating from the
training set (semantics, introduced new tokens) and preserving
meaningful features, and similarly FragmentVC for audio.

Label Pres. ∆

Domain Method Acc. F1 Levenshtein Semantics TTR

Text None .97 1.00 0 .00 .00

SD .90 .90 71 .08 .03
Mixup .92 .92 258 .20 .09
EDA .88 .88 40 .07 .01
Paraphrasing .79 .75 267 .19 .10
Text Generation .62 .69 411 .39 .14
Context Aug. .88 .89 48 .09 .03
BT (DE) .83 .83 178 .15 .05
BT (RU) .83 .84 228 .21 .03

Divergence Mel. Distortion

Audio None 1.00 1.00 .00 .00 -

Random .90 .91 .07 5.4 -
Masking .87 .90 .07 11.7 -
Loudness .95 .96 .07 1.2 -
Noise .84 .85 .20 6.9 -
Pitch shift .80 .83 .07 3.5 -
VTLP .98 .98 .06 5.2 -
Time shift .99 .99 .05 5.9 -
Speed .95 .96 .06 5.1 -
Normalisation .88 .90 .06 3.8 -
SpecAugment .58 .60 .37 19.6 -
FragmentVC .58 .52 .39 9.7 -

Table 4: Label preservation and descriptors distances for ap-
proaches on Text and Audio domains on the ADreSS set.

4. Conclusion
In this paper, we investigated a range of data augmentation
techniques for the domains of text and speech. We evaluate
the strategies on the ADReSS challenge dataset for the task
of dementia detection for neural, SVM, and Random Forest
models as well as their late fusion. Additionally, we quantify the
label preservation properties for all augmentation approaches.
Our experiments show that most of the techniques can help
the models generalise and reduce overfitting on the training set.
Generally we observe that neural-based augmentations do not
necessarily outperform simpler approaches such as adding noise
or performing random deletions and substitutions. Our models
achieve results comparable to state-of-the-art approaches on
the ADReSS set by simply augmenting the training set. Their
optimal combination needs to be analysed next.
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