
c© 2014 Soteris Demetriou

ANDROID AT RISK: CURRENT THREATS STEMMING FROM
UNPROTECTED LOCAL AND EXTERNAL RESOURCES

BY

SOTERIS DEMETRIOU

THESIS

Submitted in partial fulfillment of the requirements
for the degree of Master of Science in Computer Science

in the Graduate College of the
University of Illinois at Urbana-Champaign, 2014

Urbana, Illinois

Adviser:

Professor Carl A. Gunter

ABSTRACT

Android is an open source platform derived from Linux OS. It utilizes a

plethora of resources both local and external. Most of its local resources

(e.g procfs nodes) were inherited from Linux with some of them being even-

tually removed, while new ones were added to meet the requirements of a

mobile multi-purpose platform. Moreover, such a platform compels the in-

troduction of external resources which can be used in tandem with a variety

of sensors (e.g Bluetooth and NFC) that the device is equipped with. This

thesis demonstrates the subtlety involved in this adaptation which, if not

performed correctly, can lead to severe information leaks stemming from un-

protected local and external resources. It also presents new defense solutions

and mitigation strategies that successfully tackle the found vulnerabilities.

In particular, this thesis unearths three new side channels on Android OS.

Prior to this work, these side channels were considered to be innocuous but

here we illustrate that they can be used maliciously by an adversary to infer

a user’s identity, geo-location, disease condition she is interested in, invest-

ment information and her driving route. These information leaks, stem from

local resources shared among all installed apps on Android: per-app data-

usage statistics; ARP (Address Resolution Protocol) information;

and speaker status (on or off). While harmless on a different setting, these

public local resources can evidently disclose private information on a mobile

platform and thus we maintain that they should not be freely available to all

third-party apps installed on the system. To this end, we present mitigation

strategies which strike a balance between the utility of apps that legitimately

need to access such information and the privacy leakage risk involved.

Unfortunately the design assumptions made while adapting Linux to cre-

ate Android is not the only flaw of the latter. Specifically this work is also

concerned with the security and privacy implications of using external to the

OS resources. Such resources generate dynamic, hard to mediate channels

ii

of communication between the OS and an external source through usually a

wireless protocol. We explore such implications in connecting smartphones

with external Bluetooth devices. This thesis posits that Android falls short in

providing secure Bluetooth connections with external devices; ergo its appli-

cation in privacy critical domains is at the very least premature. We present

a new threat, defined as external-device mis-bonding or DMB for short.

To demonstrate the severity of the threat, we perform realistic attacks on

popular medical Bluetooth devices. These attacks delineate how an unau-

thorized app can capture private data from Bluetooth external devices and

how it can help an adversary spoof those devices and feed erroneous data

to legitimate applications. Furthermore, we designed an OS-level defense

mechanism dubbed Dabinder, that addresses the system’s shortcomings,

by guaranteeing that a Bluetooth connection is established only between a

legitimate app and its respective accessory.

Nevertheless, Bluetooth is not the only inadequately protected external

resource with grave privacy ramifications. We have also studied NFC, Au-

dio and SMS as potential channels of communication with alarmingly low

confidentiality guarantees. We show with real world attacks, that Android’s

permission model is too coarse-grained to safeguard such channels while pre-

serving the utility of the apps. To better understand the prevalence of the

problem we perform a measurement study on the Android ecosystem and

discuss our findings.

Finally this work presents SEACAT, a novel defense strategy, enhancing

Android with flexible security capabilities. SEACAT is a scalable, effective

and efficient solution, built on top of SELinux on Android, that enables the

protection of channels used to communicate with external to Android re-

sources. It achieves both MAC and DAC protection through straightforward

and SELinux-compatible policies as the policy language and structure used,

is in accordance with the current policy specifications. The system’s design

encompasses mirror caching on both the kernel and the middleware layer

which facilitates rapid policy enforcement through appropriate and carefully

positioned hooks in the system.

iii

To my parents, for their unconditional love and support.

iv

ACKNOWLEDGMENTS

This thesis would have not been possible to realized without the invaluable

support and daily guidance by my advisor and academic father Dr Carl A.

Gunter.

Dr Xiaofeng Wang’s indispensable guidance was also continuous through-

out my work.

Special thanks to Dr Klara Nahrstedt for her feedback and guidance.

I would also like to thank Muhammad Naveed a PHD candidate at the

University of Illinois at Urbana-Champaign and Dongjing He a former Mas-

ter’s student at the University of Illinois at Urbana-Champaign and now at

Google for our collaboration.

Furthermore I greatly value my collaboration with Xiaoyong Zhou, a for-

mer PHD student at the University of Indiana, Bloomington and now at

Samsung Mobile. Xiaorui Pan, Yeonjoon Lee and Kan Yuan from Indiana

University, Bloomington also contributed to different parts of this collabora-

tive work.

v

TABLE OF CONTENTS

LIST OF TABLES . viii

LIST OF FIGURES . x

LIST OF ABBREVIATIONS . xii

CHAPTER 1 INTRODUCTION . 1
1.1 Motivation . 1
1.2 Problem Statement . 3
1.3 Approach . 7
1.4 Thesis Contributions . 9
1.5 Thesis Organisation . 11

CHAPTER 2 BACKGROUND . 12
2.1 Android OS . 12
2.2 Android Security Model . 17
2.3 Android’s Resources . 24

CHAPTER 3 SIDE-CHANNEL ATTACKS USING LOCAL RE-
SOURCES . 27
3.1 Adversary Model . 29
3.2 Side-Channel 1: per-App Network Traffic 30
3.3 Side-Channel 2: ARP Info . 46
3.4 Side-Channel 3: Speaker Status 48

CHAPTER 4 ATTACKS ON EXTERNAL RESOURCES 57
4.1 Bluetooth Mis-Bonding Attacks 58
4.2 Other External-Resources Attacks 76

CHAPTER 5 DEFENCE: GUARDING THE VULNERABLE LO-
CAL AND EXTERNAL ANDROID RESOURCES 82
5.1 Mitigating the Side-Channel Threats on Local Resources . . . 82
5.2 DABINDER: Thwarting the DMB Threat 86
5.3 SEACAT: DAC and MAC on External Resources 92

CHAPTER 6 CONCLUSION AND DISCUSSION 112

vi

REFERENCES . 118

vii

LIST OF TABLES

2.1 Android Versions [1] . 13
2.2 Android Permissions . 20

3.1 Performance overhead of the monitor tool: there the base-
line is measured by AnTuTu [2] 32

3.2 WebMD. Comparison of Bytes Transmitted between two
Conditions of different Categories 37

3.3 WebMD. Traffic Analysis for the ACUTE SINUSITIS con-
dition navigation . 39

3.4 City information and Twitter identity exploitation 43
3.5 Geo-location with a Single BSSID 49
3.6 Comparison between a Navigation Sequence and a Text

Direction/TTS Sequence . 54
3.7 Route Identification Result. The third column is the high-

est overlap ratio of a wrong route within the top 10 TTS
sequences. FP indicates false positive. All FP routes (ac-
tually similar routes) are marked out in Figure 3.10. 55

4.1 Success rate of data-stealing attack. This table depicts the
successful connections made by the malicious app on 100
trials. 66

4.2 Average power consumption over 10 minutes per surveil-
lance technique using PowerTutor[3]. 67

4.3 Average power consumption over an hour. Comparison
between our surveillance technique and 2 popular applica-
tions using PowerTutor[3]. 67

4.4 Data-injection attack launched 1ft and 20ft away from the
victim’s phone, with the original device touching the phone.
In both cases, the experiments were repeated 100 times. 72

4.5 Sampled apps . 73
4.6 Manual analysis on 20 apps. The other 48 apps were au-

tomatically filtered out by the locations of their suspicious
APIs. 76

4.7 Critical Examples . 77

viii

5.1 Dabinder performance evaluation. (mean / sd) 92
5.2 SEACAT API . 102
5.3 Threats to Android external resources 108
5.4 A list of operations affected by SEACAT enhancements 109
5.5 Detailed Performance Measurements in milliseconds (ms) . . . 111

ix

LIST OF FIGURES

2.1 Android Software Stack [4] . 14
2.2 Activity Lifecycle [5] . 15
2.3 Application Isolation on Android 16
2.4 Android Permission Check . 21

3.1 Monitor tool precision . 31
3.2 Monitor tool UI . 32
3.3 WebMD: First Screen . 34
3.4 WebMD: A Condition’s Screen 34
3.5 WebMD Finite State Machine 35
3.6 First Order Traffic Classification of WebMD’s conditions . . . 36
3.7 Audio elements similarity when driving on the same route . . 50
3.8 Audio length sequence distinguishability 52
3.9 False positive rate vs number of audio elements 52
3.10 Three FP Routes and Their Corresponding TP Routes.

Each FP/TP pair has most of their routes overlapped. 56

4.1 Data-stealing Attack . 61
4.2 Normal Scenario . 69
4.3 Adversary injecting fake data 69
4.4 Classifications of the sampled apps. Some of them collect

information in multiple categories. 74

5.1 Effectiveness of round up/down mitigation technique 85
5.2 Bluetooth Subsystem and our defense mechanism: DaBinder

is built into AdapterService and checks the interaction be-
tween apps and Bluetooth devices. It only allows autho-
rized app to access Bluetooth device and keeps bonding
policy in a secure storage. Reference Monitor and Bonding
Policy blocks (both shown in light-blue) constitute Dabinder. 88

5.3 SEACAT architecture . 95
5.4 SEACAT Policy Compliance Check 103

x

5.5 SEACAT ’s enforcement on SMS: SEACAT labels each sms
message intent and checks if an app can access the message
before delivering the intent to the app. Also SEACAT filters
the sms content provider query results according to the
security context of the app . 106

xi

LIST OF ABBREVIATIONS

AOSP Android Open Source Project

apps Smartphone Applications

ARP Address Resolution Protocol

AVC Access Vector Cache

DAC Discretionary Access Control

DMB external-Device Mis-Bonding

IMEI International Mobile station Equipment Identity

MAC Mandatory Access Control

SEACAT Ssecurity Enhanced Android ChAnnel conTrol

xii

CHAPTER 1

INTRODUCTION

This thesis performs a detailed study on Android security and presents and

discusses appropriate mitigation strategies to address found vulnerabilities.

It specifically scrutinizes over the adoption of Linux to Android and the

inefficiencies of the system when it comes to the interplay of smartphones

with external devices and sources of information. But why should someone

study mobile device’s security? To address this question, we dedicate most

of this Section to elaborate on the role of smartphones in the contemporary

society, epitomising the significance of the provision of both security and

privacy guarantees when it comes to their design. We will also define the

problem with local and external resources and discuss our approach to effec-

tively tackle it. Subsequently we list the contributions made by this work

and finally provide the structure of this treatise on Android security.

1.1 Motivation

Seven years now, after the first iOS and Android enabled smartphones, the

technology behemoths are now responsible for 90% [6] of total smartphone

sales in 2013. These devices have revolutionized the way people communi-

cate and manage personal and business tasks. Their unprecedented nature,

which combines mobility, computational power and a model of easy to replace

applications that can facilitate every facet of our everyday lives, constitute

them an integral tool for people of any age. This very model, designed to

leverage developers’ creativity to provide users with a menagerie of apps of

any perceived purpose, led to the release of an astounding number of mo-

bile applications in official application markets. These applications cover a

broad spectrum of functionality: applications for entertainment purposes,

like games for children and for adults; apps for educational purposes that

1

can be used at schools and at home; apps that render managing financial in-

vestments trivial; apps that help people manage their time and tasks; office

apps, data management apps; even apps for medical purposes, facilitating

decision making for doctors, or helping patients manage their treatment or

daily activities to improve quality of life.

Furthermore, these multipurpose “phones” are equipped with a variety of

sensors, with receivers and transmitters that enable them to communicate

with a plethora of external sources through wireless protocols such as Blue-

tooth, NFC (Near Field Communication) and SMS (Short Message Service),

or through the Internet. These capabilities allow contemporary phones to

receive and transmit information from and to accessories, remote servers and

devices: Bluetooth is being utilized to allow smartphone users to manage

their medical conditions, keep track of their fitness progress and communi-

cate with other Bluetooth enabled phones; NFC made credit card payments

fast and seamless and can automate repetitive tasks through the tap of the

phone on an NFC tag; smartphone audio jacks can be used again for mon-

etary transactions [7] or for receiving sensitive information from accessories

regarding its user’s body functions; SMS can be more than a message ex-

change between users as it can be used for sensitive tasks i.e 2-factor authen-

tication; also Internet sockets are vital for the utility of web-based apps or

just apps that make profit out of targeted advertising.

Of particular interest, is the Android OS which dominates the smartphone

marketshare [6]. Its open source nature led to the adoption of Google’s

proud green robot by the vast majority of hardware vendors, offering An-

droid enabled devices for everyone, regardless of their financial capabilities.

Android smartphones are available from $40 to $800 with a variety of differ-

ent specifications. Flagship Android phones and tablets, now feature quad

core processors, 2GB of RAM, in par with modern laptops and notebooks.

The computational power of those devices, in tandem with their ubiquitous,

always-present nature and its current penetration has dictated the use of

Android smartphones for personal, business and medical purposes.

This vast adoption of Android, created an equally vast attack surface

for malicious applications aiming to infringe users’ privacy. Unequivocally,

investment in malware makes more sense when a security vulnerability or

breach affects a wide userspace and Android is the ideal candidate for do-

ing just that. As malware targeting Android increases, we have witnessed a

2

large scale of malicious attempts [8] exploiting the system’s vulnerability to

gain root access, or charging users money, by sending SMSs or calling pre-

mium numbers [9]. Furthermore the scientific community delineated another

spectrum of the popular system’s vulnerabilities, using more sophisticated

attacks such as permission re-delegation [10] and capability leaks [11].

Android marketshare, penetration, use in sensitive settings and the fact

that is being targeted by the vast majority of smartphone malware, high-

light the significance of both studying the risks associated with its use and

designing novel, efficient and effective defense mechanisms that minimize

those risks. Next we elaborate on the current problems of the platform in

respect to the aforementioned issues.

1.2 Problem Statement

Android was adapted from Linux with necessary modifications to reflect and

address the needs of a mobile platform. This adaptation can lead to privacy

violations if not performed correctly. The risks involved in this process stem

from two main factors. Firstly, local OS resources used in a stationary ma-

chine sometimes require different access control management when used on a

mobile platform. Secondly a mobile platform generated the need for enhance-

ments that can take advantage of its ubiquitous nature. For this purpose,

smartphones are equipped with a variety of transmitters and receivers that

enable the use of multiple wireless protocols. This new capabilities produce

new security and privacy requirements as information flows not only within

the OS, but seamlessly to and from external sources.

Firstly we postulate that Android suffers from information leaks stemming

from unprotected local resources. Android is a complicated system dealing

with a lot of user private information. In addition such a mobile platform

can accommodate the use of a myriad of third-party applications that may

or not, require access to this information to function properly and offer their

services to their users. To mediate access to such sensitive data, Android

integrates a permission model 2.2.2. This model dictates that any app that

wants to access a piece of information must request it at install time and

the user will decide whether to grant that permission to the app or reject its

installation. Even if this model has its inefficiencies, it does provide some

3

control over its local resources. Nevertheless, not every piece of information

is protected by this model. The protection of resources that are left behind,

is delegated to the traditional Linux Discretionary Access Control, where

a user or a group of users is granted a combination of the read, write

and execute permissions. However, information seemingly innocuous on a

stationary machine, that is made available to any process, can have grave

privacy implications when used on a mobile platform. Therefore, if some of

those resources are transferred from Linux to Android without the proper

access control modifications, then private information leaks are a pragmatic

and imminent threat. In addition, Android offers a rich API to provide the

means to third-party apps to readily access resources. Some of these API

calls are protected from the aforementioned permission model, however not

all of them are. This work studies the possibility that some unprotected API

calls can lead to privacy breaches.

To realize the significance of this problem considering the following exam-

ple. Lets assume that Alexander (Alex for short), owns a smartphone running

Android. Alex suffers from diabetes type II, which impels him to install a

popular web-based medical app that helps him understand the implications

of his condition and how he can better manage it. Such apps usually deal

with scores of information and is preferable to store that in a remote location.

Thus a user will download only the information he or she needs in real-time

without encumbering its device with tons of unnecessary data. Web-based

apps also have the advantage to serve both browser and mobile apps re-

quests while keeping their content easily up-to-date and synchronized in all

clients. Alex is also gay and he has decided to install a popular dating app to

help him find an appropriate partner. In addition Alex enjoys classic mobile

games and he installed a free game found online. Consider the fact that the

latter app is malicious and disguises its purposes with a smart User Interface

(UI) that allows Alex to throw screaming birds against pieces of wood and

rocks. If this malicious app gains access to the installed applications, Alex’s

sexual preferences will immediately leak, a severe privacy infringement. Fur-

thermore, if the malicious app, can access the network traffic generated by

the web-based medical app, potentially it can infer Alex’s medical condition.

This is unequivocally another privacy infringement and in addition this kind

of information can be very valuable to insurance companies. Such companies

increase the annual fee to users that are more likely to need medical care and

4

if they knew that Alex belongs to such category they would have changed its

fees appropriately.

Secondly we argue that Android also suffers from information leaks due

to unprotected communication with remote resources. Mobile platforms are

getting increasingly powerful and irrefutably are now more than devices used

to make a phone call. In particular, a plethora of business, medical, enter-

tainment and other accessories are being used daily from smartphone users.

For example Bodymedia Link Armband [12] can be used to monitor ones

daily activities, Nonin Pulse Oximeter [13] is used to monitor a patient’s

pulse and oxygen saturation and Entra Health System Blood Glucose Meter

[14] to monitor a patients blood glucose levels. All these devices use Blue-

tooth to connect to a smartphone app than enables users to better manage

their data and even share it with family, friends or their personal physicians.

Furthermore, NFC tags can be used to automate tasks on a phone. One can

use a tag to automatically input a WiFi password, change its smartphone

profile or account according to the physical location that the tag is placed.

Moreover, NFC can be used to receive credit card payments or exchange data

between NFC devices in general. The audio jack on a smartphone can also

be used for credit card payments [7] or receive and display data from fitness

devices [15]. Furthermore, SMSs can be used for 2-factor authentication,

where a user can connect and use a service using both a password and a

PIN received on her device through an SMS. Popular examples that use this

feature are among others Facebook, WhatsApp and the Chase Bank app.

Last but not least, Internet sockets (e.g TCP) are being utilized by apps

to exchange data with their respective servers. This is gaining increasing

attention as we embark on the era of the Internet Of Things (IoT) where all

devices are connected through the Internet and managed from a smartphone.

IoT devices controlled by smartphones can be used for home automation and

security [16], remotely control vehicles [17] or for health and fitness purposes

[18, 19, 20].

Bluetooth, NFC, Audio, SMS and Internet constitute channels of commu-

nication between a smartphone and a remote or external source. Here we use

external and remote interchangeably as remote sources are indeed external

resources for the mobile OS on smartphones. Since these channels carry pri-

vate information most of the times, Android developers correctly protected

access to those channels with permissions. However, not only permissions

5

are being neglected or granted without scrutiny from users [21] but even if

users bestow the appropriate attention, this work argues that they are very

coarse-grained to protect the resources they guard. Consider for example

an app that requires the Bluetooth permission to supposedly connect to an

accessory. Once the permission is granted, that app gains unfettered access

to the Bluetooth channel irrespective of the accessory currently connected

to the phone. Similarly, an app with NFC permission can access any NFC

device in vicinity. Also apps with the READ SMS permission can read any

SMS message, whether that comes from a friend or from Chase currying

security critical 2-factor authentication data. Moreover, an app with the

AUDIO permission cannot only be used to support a speaker but can read

data transitted to a connected fitness accessory [15]. Lastly, almost all free

apps use the INTERNET permission, which is needed for them to be able

to support targeted advertising. Targeted advertising is a common source of

income for free apps, as they can display advertisements to their users and

profit on every click on that advertisement. Such an app can use the Internet

permission to surreptitiously create sockets that enable it to send out stolen

information, receive malicious payloads or even take screenshots [22].

It is clear that a more fine-grained control over these channels is needed to

control access to information communicated through them. Such control will

allow a messaging app to read all SMSs except from those that are protected

such as an SMS from Chase which can be configured to be read only by the

Chase Bank app. It will also allow an app to talk to its headset but restrict

it from talking to a protected blood glucose meter and so on.

To better understand the problem lets consider Maria (Maria for short

too). Maria is an athletic person and uses a fitness accessory that connects

via Bluetooth to its respective app installed on her smartphone. This allows

her to keep track of her diet, fitness and body status. Maria has another

app installed and she granted it the Bluetooth permission as well, because

in its description it posits that it needs it to connect to Maria’s headset and

it indeed does. However, the latter app exploits that fact and connects to

the fitness accessory too. It furtively steals that information and it sells it

to advertising companies along with Maria’s IMEI number (a unique per

device number used by a GSM network to identify valid devices). Further-

more, Maria is a Chase Bank customer and she uses its mobile application

to conveniently pay her credit card and deposit cheques. The Chase Bank

6

app uses 2-factor authentication and requires Maria to input along with her

password, a PIN that she can receive through an SMS. However, Maria in-

stalled another app which can scan barcodes on groceries and supply her

with calorie information. That app requires the READ SMS permission as

it allows Maria to swiftly text such information with her friend Anna (also

Anna for short) who is too a fitness enthusiast. However that app manip-

ulates its access to the received SMSs to read authentication PINs sent by

Chase and uses them to obtain access to Maria’s Chase account.

Anna, Maria’s friend, uses a fitness bracelet that connects to her smart-

phone app through the Audio jack and allows her to better manage their

training progress. Anna also like music and she has installed an app to man-

age her playlists and listen to her favorite songs. The latter app though,

abuses the fact that Anna has granted it the AUDIO permission and reads

the data sent by the fitness bracelet when connected to the phone. In turn

it sells that data to advertising companies.

Evidently Android local and external resources can leak critically private

information if not adequately protected. This work performs a systematic

study to help unearth vulnerabilities stemming from such resources and un-

derstand the magnitude of the problem. We will also discuss mitigation

strategies which we designed to protect the OS from such vulnerabilities.

Before delving into the details of this work, we will expatiate on the ap-

proach to address this fundamental design problem.

1.3 Approach

This work studies the vulnerabilities of Android OS in respect to inadequately

protected local and external resources and further proposes mitigation strate-

gies.

Firstly, we look into the risks involved in adapting Linux to Android. This

adaptation if not done carefully can expose seemingly innocuous information

to unauthorised apps that can exploit it for their malicious purposes. Vulner-

abilities can arise due to mainly two factors: erroneously configured Linux

DAC or the absence of Android permissions when necessary. On the one

hand the Linux file system is protected with a Discretionary Access Control

Model to mediate access to directories and files on the system. Such files

7

can carry information that might not be considered sensitive on a stationary

machine, and thus processes are granted unfettered access to them. How-

ever, when applied on a mobile platform this public access can lead to severe

information leaks. For example, knowing the router a stationary machine

is connected to might not pose a risk as usually such a machine is always

connected to a private network, e.g at home or at work. Therefore processes

can be allowed to read such information as the risk is minimal. Nonetheless,

when such information is unprotected on a mobile platform, third-party apps

can utilize it to know the user’s current location at all times, given the fact

that people carry their smartphones wherever they go. On the other hand,

Android controls access to sensitive information with the use of permissions.

During installation time, a third-party app asks the user to grant it the per-

mission to access a particular resource. When an app wants to accesss a

resource, it can use Android’s API to call the appropriate method that will

return the data requested. During that request, the OS will check whether

the appropriate permission was granted by the user and decide whether to

allow access to the resource or through a security exception. However, if an

API method that allows access to private information is not mediated by a

permission check from the OS, it can lead to information leaks.

To study whether there are files insufficiently protected through Linux

DAC access control and whether there are information leaks stemming from

API calls not protected with permissions, this thesis inspects resources dis-

closed at both the Android and Linux layer and scrutinizes over their security

implications. When an unprotected resource leading to a privacy breach is

unearthed, a detailed real world attack example is being presented to delin-

eate the risk associated with such an inefficiency.

Secondly, we will examine the communication of Android powered phones

with external or remote resources. We consider external resources to be any

kind of accessory or remote source of information that can transmit or receive

information to and from the smartphone to enhance its capabilities. To this

end, a study is being performed on the communication of smartphones with

Bluetooth and NFC devices, the receipt of SMS messages and communication

with accessories connected to the phone through the audio jack. In this

work we refer to SMS, Bluetooth, NFC, Internet and Audio as channels of

communication with external resources. As previously mentioned Android

guards access to resources through permissions and it doesn’t fail to do that

8

for the aforementioned channels. For example if an app wants to establish

a Bluetooth connection with a Bluetooth device it has to be granted the

Bluetooth permission by the user, to be able to make the appropriate method

call. Here we argue that the permission model is too coarse-grained to protect

access to those channels. Consider an app that wants to talk to a Bluetooth

headset and for that is granted the Bluetooth permission. That privilege

allows it to access any Bluetooth device in vicinity that is paired with the

phone.

To study the risks involved with the coarse-granularity of the permission

system when it comes to protecting communication with external resources,

this work performs a meticulous security study on the most prominent chan-

nels of such communication. It looks into the communication of Android-

enabled phones with Bluetooth devices and designs attacks that demonstrate

the system’s incapacity to protect such interaction. Then we will perform a

measurement study to help better understand the prevalence of the problem.

Next, we will attempt a generalisation to other channels of communication

with external resources, such as Internet, SMS, Audio and NFC. We will

delineate the severity of the problem with a survey on Google Play (the offi-

cial Android App Market) and we will design and demonstrate attacks when

needed, to exemplify it.

Lastly, this work will discuss mitigation strategies for the problems and

vulnerabilities found. We will discuss known solutions and design new ones

when appropriate. For example there is no known solution for allowing fine-

grained access control to external resources, and this work will attempt to

design an effective, efficient and novel system to address that threat.

The next Section will summarize the contributions made by this thesis and

the last Section will elaborate on the structure of this report.

1.4 Thesis Contributions

Here we summarize this work’s jointly with Zhou et al. [23], Naveed et al. [24]

and Demetriou et al. [25], contributions:

• We found new information leaks from Android public local resources. Re-

lated work has been focusing on implementation flaws on Android. Here we

studied how Android’s design has some demonstrably fallacious assumptions

9

that can lead to hazardous information leaks. Such assumptions result in

Android local resources being left unprotected. However some seemingly in-

nocuous local resources can leak user private information. We demonstrate

the design flaws with a suite of new inference techniques that depict how an

adversary can recover a user’s data from Android public local resources.

•We found new threats on Android’s communication with external resources.

This work systematically studies Android’s channels of communication with

external resources. These channels, namely Bluetooth, SMS, NFC, and Au-

dio are proven to be insufficiently protected by Android’s Permission Model.

We define a new threat that we call device mis-bonding (DMB) for the Blue-

tooth channel and further demonstrate that Android’s Permissions are too

coarse-grained to support the utility of the apps while guaranteeing the con-

fidentiality of the data communicated through these channels. Furthermore

we measure the prevalence of the problem in the Android ecosystem.

•We developed strategies to mitigate the threat stemming from Android public

local resources. We have developed a new mitigation approach, designed to

preserve the utility of legitimate apps, while at the same time allows control

on how public data can be made available to an adversary.

• We developed a new technique called Dabinder that mitigates the DMB

threat through appropriate changes on the OS. We have developed the first

technique to mitigate the device mis-bonding (DMB) threat. This approach

automatically generates security policies for protecting the bond between an

external Bluetooth device and it’s authorized app. Furthermore our defense

effectively enforces these security policies without impeding normal opera-

tions on the phone.

•We developed a new OS-level solution called SEACAT to safeguard the com-

munication with Android external resources, using both MAC and DAC. We

have designed the first mechanism that provides comprehensive protection of

different kinds of Android external resources over their channels in a uniform

way. Our approach is built on top of SELinux on Android and achieves both

MAC and DAC in an integrated, highly efficient way, without undermining

their security guarantees. These new techniques help both system admin-

istrators and ordinary Android users to specify their policies and safeguard

their accessories and other external resources.

10

1.5 Thesis Organisation

In Section 2, we will present background knowledge needed to support the

technicalities of the remaining sections. In particular, we briefly present

the Android OS 2.1, explaining its major components. Next, we will look

into the Android Security system (2.2), focusing on how Android Sandboxes

applications (2.2.1), how it protects sensitive API calls (2.2.2) and the partial

integration of SEAndroid [26] (2.2.3) on the latest releases. We will continue

with a brief analysis on local (2.3.1) and external Android resources (2.3.2).

In Section 3 we present the study on Android local resources: after a brief

overview, this thesis presents the adversary model we considered (3.1). Sub-

sequently it shows how that adversary can use information from unprotected

local resources to infer an Android user’s Twitter account, Health information

and Stock Exchange Preferences (3.2). Then based on other vulnerabilities

from local resources an attack is presented that allows the adversary to in-

fer a user’s location (3.3) and another attack leads to a user’s driving route

inference (3.4).

In Section 4 we elaborate on our study on Android external resources.

We will illustrate attacks on the Bluetooth channel (4.1) and then we will

generalise the problem to other channels (4.2). We will depict the significance

of the problems found with relevant surveys.

In Section 5 we will present known solutions to the local resources attacks

5.1 and a new defense mechanism that mitigates the Bluetooth attacks (5.2).

Thereafter we will illustrate a scalable, effective and efficient solution we have

designed to tackle the external resources threat (5.3).

Lastly in Section 6 we will conclude this thesis and discuss its findings.

11

CHAPTER 2

BACKGROUND

In this Section we provide background to facilitate understanding of the work

performed in analyzing vulnerabilities on Android stemming from insuffi-

ciently protected local and external resources and in designing a system to

mitigate such inefficiencies. We will look into the architecture of the Android

OS and its major components, we will discuss its current security model and

finally explain what this work perceives as local and external resources.

2.1 Android OS

The advent of Android was announced on November 5th, 2007. This exquisite

mobile platform was a result of a partnership of Google with OHA (Open

Handset Alliance), a consortium of telecommunication, software and hard-

ware companies and its source code is made publicly available. Android is an

open source software stack encompassing a kernel layer, a middleware layer

and basic applications.

Since the announcement of the first Android version, a number of new OS

releases followed as depicted in table 2.1, with every version being playfully

given a desert name [1]. Google ships its Nexus devices with the unmodified

Android open source code while other hardware companies such as Samsung

and HTC release their devices with appropriate modifications to satisfy their

specific UI or hardware requirements.

2.1.1 Architecture Overview

Android is usually depicted as a software stack featuring a Linux Kernel

at the lower level. On top of that lies the Android middleware which inte-

grates libraries written in C, the Dalvik virtual machine and the application

12

Table 2.1: Android Versions [1]

No Release Number Code Name
1 1.0 Android Alpha
2 1.1 Android Beta
3 1.5 Cupcake
4 1.6 Doughnut
5 2.0-2.1 Eclair
6 2.2-2.2.3 Froyo
7 2.3-2.3.7 Gingerbread
8 3.0-3.2.6 Honeycomb
9 4.0-4.0.4 Ice Cream Sandwich
10 4.1-4.3.1 Jelly Bean
11 4.4-4.4.4 KitKat

framework written in Java. The Android software stack is displayed in figure

2.1.

Applications are also written in Java and can make use of a rich API

provided by the Application Framework to access resources on the device

such as the SMSs or contacts and perform actions such as place a phone call,

handle an incoming phone call or SMS, access the GPS or accelerometer data

and so on. Nevertheless, use of native code (C, C++) is not prohibited and

apps can use it although they rarely do. An app can also use the JNI (Java

Native Interface) that allows Java code to interact with native code when use

of both is imperative. An application’s major components are Activities,

Services, Content Providers, Intents, Broadcast Receivers.

Activity: An Activity is usually correlated with a UI screen on the phone.

An activity can display UI elements when in the foreground, invoke another

activity (screen) or be invoked to be shown on the foreground. It must extend

the Android Activity class and follow the Activity Lifecycle as shown in figure

2.2 given by the official Android documentation [5].

Service: A Service is an application component that does not need a UI

to run. It is being used to perform tasks in the background and can continue

running even if the parent app is not. They have high priority and they are

the last being killed by the OS in the event that resources need to be freed.

Even then they are immediately restarted once enough resources are made

available.

Content Provider: A Content Provider is a convenient structure pro-

13

Figure 2.1: Android Software Stack [4]

vided by the application framework to applications, to access databases on

the device. For example if an app needs to access the SMSs, it can use

the appropriate content provider which allows the app to query the SMS

database.

Intents: Intents is a powerful inter-component communication tool for

applications and userspace processes. An application (built-in or third-party)

can notify other applications about an event, or even send data to interested

applications through this mechanism. Interested applications can receive

such broadcasted intents through Broadcast Receivers.

Broadcast Receiver: An application can register a broadcast receiver

to receive specific intents. For example an app can register to receive the

intent sent by a framework app notifying that the system has booted, or

that a bluetooth device has just paired. Another example is the Activity

Manager that can receive intents regarding the intention of an activity to

launch a new activity. We will elaborate on how this works later on.

It is also important to understand that each Android application runs as a

separate Linux process with its own instance of the Dalvik Virtual Machine

14

Figure 2.2: Activity Lifecycle [5]

(DVM) as shown in figure 2.3. Dalvik is an efficient process virtual machine

specially designed for Android due to its constraints in memory and processor

speed. Android programs are usually written in Java and then compiled to

bytecode. Then they are converted from .class files compatible with the Java

Virtual Machine, to Dalvik executable files (.dex). Subsequently these .dex

files are compressed in an apk (Android Application Package) and installed

on the Android device.

2.1.2 Android Boot Sequence and the Zygote Process

When an Android device boots, the bootloader runs first, which eventually

starts the kernel. Once the Kernel is up and running it will mount the root

15

Figure 2.3: Application Isolation on Android

filesystem and launch the init process. This process will look into a file called

init.rc which dictates which system services will have to be launched next and

set up filesystem and other system parameters. Init will start the Service

Manager which is responsible for managing services’ registration and requests

for registered services. The init process will also start the Zygote. The Zy-

gote is the parent process of every other process. For example since every

application is essentially a process, that must be forked out from the Zygote

and this exactly what the Activity Manager is doing. Next the Zygote ini-

tializes the Dalvik VM and forks the GUI process and the System Server

process in their respective DVMs. The System Server process is responsi-

ble for starting the Android system services such as the Activity Manager,

Telephony Manager, Package Manager (handles installation/uninstallation

of applications), Bluetooth and so on.

When the System Server starts a Service, that action goes through the

Service Manager which maintains an index of all started services. Now,

if an app wants to access a system service, it has to go through an RPC

(Remote Procedure Call) mechanism called Binder which in turn will deliver

the request to the Service Manager. The Manager then will return again

through the Binder, a handle to the application which will allow it to use the

service. The Binder is implemented in the kernel and the app developers do

not interact with it directly when requesting a Service access.

Having a basic understanding of the Android platform and important terms

covered we will now scrutinize over the Android Security Model.

16

2.2 Android Security Model

Android employs a number of security features. We will focus on the inherent

Linux security, the permission model to protect sensitive API calls and the

latest integration of SELinux on Android which enables Mandatory Access

Control on the kernel.

2.2.1 Application Sandbox

As stated before, Android features a Linux kernel. As a result it benefits

from its discretionary access control (DAC) on the filesystem. This is

an implementation of access control lists (ACLs), where for each object

the system stores a list of users that can access it. In Unix and in extend

Linux and Android, users can be grouped together to avoid long sparse lists.

This is stored in the file’s node and when a user requests access to it, the OS

will check whether the requesting user is the owner of the resource. If that is

not the case it will then check if the user belongs to a group that can access

it. Lastly it checks whether the resource can be accessed by the rest of the

world to decide if it will grant access. The actions that can be performed by

a user on a Linux file are one of three: Read; Write or Execute.

On Android each application is considered a different user and runs in its

own Linux process. This way it owns its own memory stack and can access its

own resources taking advantage of Linux’s user-based protection. The system

bestows a unique User IDentifier called UID to every installed application

and runs it in a newly forked process. Linux ensures that no process can

access another process’s resources and restrict communication between them

through its secure IPC (interprocess communication) mechanism. This is

known as the Application Sandbox and its implemented in the kernel. Thus

it can protect applications from each other whether they use Java or native

code. Thus application sandbox can be compromised only when the kernel

itself is compromised.

However Android provides developers the capability to share resources

among their own applications: Apps are signed with certificates whose private

key are in the acquisition of their respective developers. Applications signed

with the same certificate, can request to share UID and thus consider as a

single Linux user and share the same resources. This request to the system,

17

can be defined by the application developer in the app’s manifest file, namely

AndroidManifext.xml. The presence of that file in the app’s root directory

is non optional. It tells the system about the major components the app

is using (Content Providers, Broadcast Receivers, Services, Activities e.t.c),

lists libraries that the app must be linked against, requests permissions to

access protected APIs, names the Java package for the app which can be

used to uniquely identify it and contains other essential information about

running the particular app.

2.2.2 Permission Model

Android offers applications a rich API to access resources on the system

through its application framework shown in figure 2.1. The Android sanbox

allows access to some basic resources. To protect access to resources that are

considered sensitive, such as accessing services that might cost users money,

or functions that can lead to private information leaks, Android employs a

security mechanism called Permissions. According to this mechanism, a

permission is mapped with one or more sensitive functions. An application

must declare in its manifest all permissions required for it to run properly,

according to the function call (or resource accesses) it makes. During the

application’s installation process handled by the Package Manager, the user

is presented with a list of permissions the app is requesting. Each permission

is presented alongside a description of what an app can do with that per-

mission granted. The user can either accept all permissions requested and

install the app or abort the installation process. These are known as the

system default permissions. Furthermore, an application can declare its

own permissions to control access to its own resources. This way other apps

can request the permission declared and the data owner app can check data

requesting apps whether they have the permission or not. For example this

can be used by collaborative apps, either from the same developer or not.

Android Permissions can have different protection levels. A permis-

sion’s protection level can have the value normal, dangerous, signature

or signatureOrSystem. A normal permission is consider to be of minimal

risk to the application, the system or the user. Such permissions can be

granted automatically by the system without user interaction during instal-

18

lation unless their revision is explicitly requested by the user. A dangerous

permission is of higher risk as it can provide access to private information

or device features that can adversely impact the user. These kind of per-

missions must be presented to and accepted by the user during an app’s

installation process. Dangerous permissions protect among others: Camera

functions; Location data (GPS); Bluetooth functions, NFC functions, Au-

dio functions, Telephony functions, SMS/MMS functions and Network/data

connections. Table 2.2 is an excerpt from Android developers official web-

site [27] listing Android system default permissions. A signature permission,

is granted automatically by the system only if the requesting application is

signed with the same certificate as the application that declared the permis-

sion. Lastly a signatureOrSystem permission that the system automatically

grants to the requesting application, if that application is either signed with

the same certificate as the declaring application or the requesting application

is built as part of the Android system image (i.e a system application). The

first comprehensive study on Android Permissions was conducted by Felt et

al. [21].

The Android OS checks permissions in 2 ways as shown in Figure 2.4:

Either at the framework level or at the kernel level. Most commonly, an

application can request access to a sensitive API using the appropriate Man-

ager. The Manager provides a convenient way to apps to query a Service

for a resource. The request will go from the Manager, through the Binder to

the Service, which will check whether the calling process has the permission

to access the requested resource. If it does, access is granted, otherwise a

Security Exception is thrown back to the application. Consider for example

an application that wants to connect to a paired Bluetooth device. That app

will use the BluetoothAdapter to find the BluetoothDevice it needs. Then it

will obtain a BluetoothSocket handle calling device.connectRFcommSocket

for serial data transfer with the RFCOMM protocol. The socket handle can

be used to call socket.connect to actually establish the connection. The

connect request will go through Binder RPC to the Bluetooth Manager Ser-

vice which binds to AdapterService. The Adapter Service is responsible

to establish the connection on behalf of the app. Before doing so, it checks

whether the calling app has the BLUETOOTH permission.

Alternatively an app can directly request access to a hardware feature.

This request can be checked for permission at the kernel layer. For example

19

Table 2.2: Android Permissions

Name Description
BLUETOOTH Allows applications to connect to

paired Bluetooth devices
BLUETOOTH ADMIN Allows applications to discover and

pair bluetooth devices
CAMERA Required to be able to access the

camera device
NFC Allows applications to perform I/O

operations over NFC
GET TASKS Allows an application to get infor-

mation about the currently or re-
cently running tasks

INTERNET Allows applications to open net-
work sockets

READ SMS Allows an application to read SMS
messages

RECEIVE BOOT COMPLETE Allows an application to receive the
ACTION BOOT COMPLETED
that is broadcast after the system
finishes booting.

RECORD AUDIO Allows an application to record au-
dio

when an app is granted the INTERNET permission during installation, its

assigned UID is mapped with the Internet Group’s ID (GID), which corre-

sponds to the number 3003 and referred to with the constant AID INET in

the kernel. Before an IPv4 or IPv6 socket is created, the kernel first checks

whether the requesting process belongs to the group AID INET. If it doesn’t,

it returns an access error.

2.2.3 SELinux on Android

SELinux is a Mandatory Access Control (MAC) security mechanism, de-

signed by United States National Security Agency, and is integrated in var-

ious popular Linux distributions. Smalley et al. [26] published a detailed

solution to port SELinux on Android, called Security Enhanced Android

(SEAndroid).

Security-Enhanced Android is built on top of Android [26]. It is designed

20

Figure 2.4: Android Permission Check

to mediate all interactions of an app with the Linux kernel and other sys-

tem resources. Furthermore, SEAndroid confines even system daemons to

limit the damage they can cause once they are compromised. It also pro-

vides a centralized policy configuration for system administrators and device

manufacturers to specify their policies.

More specifically, SEAndroid [26] associates with each subject (e.g., pro-

cess) and object (e.g., file) a security context, which is represented as

a sequence user: role: domain or type[: level] and indexed by a

Security Identifier (SID). The most important component here is type1.

Under a type enforcement (TE) architecture, a security policy dictates

whether a process running within a domain is allowed to access an object

labeled with a certain type. Following is a policy specified for all third-party

apps: allow untrusted app shell data file:file rw file perms. This

policy states that all the apps within the domain of untrusted app are al-

lowed to perform “rw file perms” operations on the objects with a type of

shell data file within a class2 file.

SEAndroid appeared in Android in version 4.3, running in permissive

mode. In this mode, the system allows a process to access a resource even

1role is for role-based access and level for multi-level security.
2A class defines a set of operations that can be performed on an object.

21

if that violates the policy. However it records the violations and reports

it in the system’s logs. It is common practice to test SELinux policies in

permissive mode, to identify policy inadequacies or unearth policy bugs that

might result to system crashes. In version 4.4 we saw SEAndroid running in

enforcing mode for several root daemon processes such as installd (responsible

for installing apps), the zygote (responsible for forking new processes for

newly launched apps), the vold process (volume daemon: manages device

nodes) and the netd (network daemon: provides access to the Network). All

other processes, including system and third-party apps and services still run

in permissive mode.

The policy files are under external/sepolicy in AOSP’s (Android Open

Source Project) source code and are built with the system such that the

resulting policy in binary code is read-only and unable to be modified without

shipping a new binary and rebooting the phone. The most important files

are mac permissions.xml, file contexts, .te files for each domain that

processes can be assigned to and seapp contexts. In mac permissions.xml,

policy engineers can define a label to be assigned to an app, according to

the certificate used to sign it. That label is called seinfo. In file contexts,

every Linux file is assigned a security type. In seapp contexts, domains are

defined for seinfo labels. Lastly a domain is defined by creating a “domain

name”.te file. Inside that file the rules dictating what a process that belongs

to that domain can access are defined.

Consider the following example. Let’s say that we want to assign an app

called TestApp to a domain called testdomain app. Then we want to al-

low that app to open the wallpaper file /data/data/com.android.settings

/files/wallpaper. First we must assign a security context to the subject,

i.e the file. Inside file contexts we add the following line:

/data/data/com.android.settings/files/wallpaper \
u:object r:wallpaper file:s0

This will assign the type wallpaper file to our file in question. Next

we must create the domain that will be allowed to access this file. For that

we create under external/sepolicy a testdomain app.te file. Inside this file

we will place all the rules that will dictate what a process assigned to this

domain can access. Thus we include a rule like below:

22

allow testdomain app wallpaper file:file open;

The class file is defined in the file external/sepolicy/access vectors.

In that file the operation open is defined for subjects that will belong to

the class file. Our rule will allow any subject in the testdomain app do-

main, to perform the action open on the wallpaper file object which is a

file. We are still missing something though. We haven’t told the sys-

tem how to associate our TestApp app with the testdomain app domain.

For that we include the app’s certificate (e.g testApp.x509.pem file) under

built/target/product/security. Inside external/sepolicy/keys.conf we define

a tag name (e.g TESTTAG) to refer to our app’s certificate. To do that we

use the following syntax:

[@TESTTAG]

ENG :testApp.x509.pem

Next in mac permissions.xml we associate this certificate with an seinfo

tag let’s say testApp seinfo. To do that we include the following lines of

code:

<signer signature="@TESTTAG">

<seinfo value="testApp seinfo" />

</signer>

Lastly we associate the seinfo tag assigned to our app with the testdo-

main app domain in seapp contexts by adding the following line:

user= app seinfo=testApp seinfo domain=testdomain app

The SEAndroid module currently incorporated into the AOSP (Android

Open-Source Project) 4.3 and 4.4 defines five domains within its policy files:

platform app; shared app; media app; release app and untrusted app.

23

The platform domain is assigned to all apps signed with the platform key,

i.e packages that are considered as part of the core platform such as System

UI, Bluetooth, Settings e.t.c. The shared domain is assigned to the launcher

and contacts related packages while the media platform is assigned to the

gallery app and media related providers. The release domain is assigned

typically to device’s vendor apps and google apps. The last one, untrusted

domain, is the domain assigned to all applications installed by the user.

As noted before, these policy files are ready-only and compiled into the

Android kernel code. They are enforced by security hooks placed at differ-

ent system functions at the kernel layer. For example, the function open

we saw before, is instrumented to check the compliance of each call with

the policies: it gets the type of the file to be opened and the domain of

the caller, and then runs avc has perm with the SIDs of both the subject

(testdomain app) and object (wallpaper file) to find out whether this oper-

ation is allowed by the policies. Here avc has perm first searches an Access

Vector Cache (AVC) that caches the policies enforced recently and then the

whole policy file. In addition to the components built into the kernel, SEAn-

droid also includes a separate middleware MAC (MMAC) that works on the

application-framework/library layer. The current implementation of MMAC

is limited to just assigning a security tag (testApp seinfo) to a newly installed

application (TestApp) (through mac permissions.xml). When Zygote forks

a process for an app to be launched, it uses that tag in tandem with a policy

file (seapp contexts) to decide which SELinux domain should be assigned

to it.

SELinux integration on Android creates new possibilities for defending the

system and the applications it supports and this work we will take advantage

of this it and seamlessly extend it to protect against critical vulnerabilities

that we will discuss on later chapters.

2.3 Android’s Resources

Android is an operating system and as such it manages numerous resources.

Some of resources can be utilized by the system for maintenance and schedul-

ing whereas others are being provided to applications which leverage them to

offer creative functionalities to the platform’s user. This Section will define

24

the meaning of local and external resources as used throughout this work.

2.3.1 Android’s Local Resources

Here we will focus on local resources that Android makes publicly available

to all unprivileged processes and therefore all third-party apps without the

need of a permission. We follow the classification on these local unprotected

resources proposed in joint work with Zhou et al. [23]). Specifically these

public local resources can be part of two categories: Linux public direc-

tories and Android public APIs.

• Linux layer: public directories. Linux historically makes available a large

amount of resources considered harmless to normal users, to help them coor-

dinate their activities. A prominent example is the process information dis-

played by the ps command (invoked through Runtime.getRuntime.exec),

which includes each running process’s user ID, Process ID (PID), memory

and CPU consumption and other statistics.

Most of such resources are provided through two virtual filesystems, the

proc filesystem (procfs) and the sys filesystem (sysfs). The procfs contains

public statistics about a process’s use of memory, CPU, network resources

and other data. Under the sysfs directories, one can find device/driver in-

formation, network environment data (/sys/class/net/) and more. An-

droid inherits such public resources from Linux and enhances the system

with new ones (e.g. /proc/uid stat). For example, the network traffic

statistics (/proc/uid stat/tcp snd and /proc/uid stat/tcp rcv) are ex-

tensively utilized [28] to keep track of individual apps’ mobile data consump-

tion.

• Android layer: Android public APIs. In addition to the public resources

provided by Linux, Android further offers public APIs to enable apps to

get access to public data and interact with each other. An example is

AudioManager.requestAudioFocus, which coordinates apps’ use of the au-

dio resource (e.g, muting the music when a phone call comes in). Another

example is the PackageManager.getInstalledApplications which allows

an app to get a list of installed applications.

Access to those resources is allowed by design as the information one can

acquire through them is not consider sensitive or security critical by the OS

25

developers.

2.3.2 Android’s External Resources

Android and other mobile systems are routinely employed by their owners for

managing their external resources. Particularly, almost every app running

on these systems is supported by a remote service, which interacts with the

app through the Internet or the telephone network (using short text mes-

sages). Such services are increasingly being utilized to store and process pri-

vate user information, particularly the data related to online banking, social

networking, investment, healthcare, etc. Moreover, the trend of leveraging

smartphones to support the Internet of Things, brings in a whole new set of

external devices, which carry much more sensitive data than conventional ac-

cessories (e.g., earpieces, game stations). Examples include health and fitness

systems (e.g., blood pressure monitors [18], Electrocardiography sensors [19],

glucose meters [29]), remote vehicle controllers (e.g., Viper SmartStart [17]),

home automation and security systems [16] and others. Those external de-

vices and Internet resources are connected to smartphones through a variety

of channels, which are essentially a set of hardware and software through

which an app accesses the external resources. These channels are composed

of Bluetooth, NFC, SMS, Internet and Audio.

26

CHAPTER 3

SIDE-CHANNEL ATTACKS USING LOCAL
RESOURCES

As stated in Section 2.3.1 Android provides unprivileged applications with

access to basic local resources. All such public resources are considered to be

harmless and their releases are part of the design which is important to the

system’s normal operations. Examples include the coordination among users

through the ps command and among the apps using audio resources they

access through he API call AudioManager.requestAudioFocus. However,

those old design assumptions on the public local resources are becoming

increasingly irrelevant in front of the fast-evolving ways to use smartphones.

In joint work with Zhou et al. [23] we identified two fundamental design/use

gaps that are swiftly widening, affecting the Android ecosystem:

Firstly, we found that there is a gap between Linux’s design and the smart-

phone use. Linux comes with the legacy of its original designs for worksta-

tions and servers. Some of its information disclosure, which could be harm-

less in these stationary environments, could become a critical issue for mobile

phones. For example, Linux makes the MAC address of the wireless access

points (WAP) available under its procfs. This does not seem to be a big

issue for a workstation or even a laptop back a few years ago. For a smart-

phone, however, knowledge about such information will lead to disclosure

of a phone user’s location, particularly with the recent development that

databases have been built for fingerprinting geo-locations with WAPs’ MAC

addresses (called Basic Service Set Identification, or BSSID).

Secondly, we witnessed the manifestation of a gap between the assump-

tions on Android public resources and evolving app design, functionalities

and background information throughout our study. For example, an app

is often dedicated to a specific website. Therefore, the adversary no longer

needs to infer the website a user visits, as it can be easily found out by looking

at which app is running (through ps for example). Most importantly, today’s

apps often come with a plethora of background information like tweets, pub-

27

lic posts and public web services such as Google Maps. As a result, even

very thin information about the app’s behavior (e.g., posting a message), as

exposed by the public resources, could be linked to such public knowledge to

recover sensitive user data.

Specifically, in our joint research [23], we carefully analyzed the ways public

local resources are utilized by the OS and popular apps on Android, together

with the public online information related to their operations. Our study

discovered three confirmed new sources of information leaks:

• App network-data usage (Section 3.2). We found that the data usage

statistics disclosed by the procfs can be used to precisely fingerprint

an app’s behavior and even infer its input data, by leveraging online

resources such as tweets published by Twitter. To demonstrate the

seriousness of the information leakage from those usage data, we de-

veloped a suite of inference techniques that can reveal a phone user’s

disease conditions she is interested in from the network-data consump-

tion of WebMD app, her identity from that of Twitter app, and the

stock she is looking at from Yahoo! Finance app.

• Public ARP information (Section 3.3). We discovered that the pub-

lic ARP data released by Android (under its Linux public directory)

contains the BSSID of the WAP a phone is connected to, and demon-

strate how to practically utilize such information to locate a phone user

through BSSID databases.

• Audio status API (Section 3.4). We show that the public audio sta-

tus information (speaker on/off) collected from a GPS navigator can

be used to fingerprint a driving route. We further present an infer-

ence technique that uses Google Maps and the status information to

practically identify her driving route on the map.

We built a zero-permission app that stealthily collects information for these

attacks. This Section elaborates on side-channel attacks designed and exe-

cuted based on these newly found information leaks. Firstly we will see the

capabilities that adversary (3.1) possess to be able to deploy such attacks.

28

3.1 Adversary Model

The adversary considered in our research runs a zero-permission app on the

victim’s smartphone. Such an app needs to operate in a stealthy way to

visually conceal its presence from the user and also minimize its impact on

a smartphone’s performance. On the other hand, the adversary has the re-

sources to analyze the data gathered by the app using publicly available

background information, for example, through crawling the public informa-

tion released by social networks, searching Google Maps, etc. Such activities

can be performed by ordinary Internet users.

In addition to collecting and analyzing the information gathered from the

victim’s device, a zero-permission malicious app needs a set of capabilities to

pose a credible privacy threat. Particularly, it needs to send data across the

Internet without the INTERNET permission. Also, it should stay aware of

the system’s situation, i.e., which apps are currently running. This enables

the malicious app to keep a low profile and start data collection only when

its target app is being executed. Here we show how these capabilities can be

obtained by the app without any permission.

A malicious app should be able to share the surreptitiously stolen data

with the adversary’s remote location. Leviathan’s blog describes a zero-

permission technique to smuggle out data across the Internet [30]. The idea

is to let the sender app use the URI ACTION VIEW Intent to open a browser

and sneak the payload it wants to deliver to the parameters of an HTTP GET

from the receiver website. We re-implemented this technique in our research

and further made it stealthy. Leviathan’s approach does not work when the

screen is off because the browser is paused when the screen is off. We im-

proved this method to smuggle data right before the screen is off or the screen

is being unlocked. Specifically, our app continuously monitors /lcd power

(/sys/class/lcd/panel/lcd power on Galaxy Nexus), an LCD status in-

dicator released under the sysfs. Note that this indicator can be located

under other directory on other devices, for example, sys/class/backlight

/s6e8aa0 on Nexus Prime. When the indicator becomes zero, the phone

screen dims out, which allows our app to send out data through the browser

without being noticed by the user. After the data transmission is done, our

app can redirect the browser to Google and also set the phone to its home

screen to cover this operation.

29

A malicious app should also be aware of the system’s situation or state.

Our zero permission app defines a list of target applications such as stock,

health, location applications and monitors their activities. It first checks

whether those packages are installed on the victim’s system (getInstalled

Applications()) and then periodically calls ps to get a list of active apps

and their PIDs. Once a target is found to be active, our app will start a

thread that closely monitors the /proc/uid stats/[uid] and the /proc/

[pid]/ of the target.

3.2 Side-Channel 1: per-App Network Traffic

3.2.1 Usage Monitoring and Analysis

Mobile data usages of Android are made public under /proc/uid stat/ (per

app) and /sys/class/net/[interface] /statistics/ (per interface). The

former is newly introduced by Android to keep track of individual apps.

These directories can be read by any app directly or through TrafficStats,

a public API class. Of particular interest here are two files /proc/uid stat

/[uid]/tcp rcv and /proc/uid stat/[uid]/tcp snd, which record the to-

tal numbers of bytes received and sent by a specific app respectively. We

found that these two statistics are actually aggregated from TCP packet

payloads: for every TCP packet received or sent by an app, Android adds

the length of its payload onto the corresponding statistics. These statistics

are extensively used for mobile data consumption monitoring [28]. However,

our research shows that their updates can also be leveraged to fingerprint an

app’s network operations, such as sending HTTP POST or GET messages.

To catch the updates of those statistics in real time, we built a data-usage

monitor that continuously reads from tcp rcv and tcp snd of a target app

to record increments in their values. Such an increment is essentially the

length of the payload delivered by a single or multiple TCP packets the app

receives and sends, depending on how fast the monitor samples from those

statistics. Our current implementation has a sampling rate of 10 times per

second. This is found to be sufficient for picking up individual packets most

of the time, as illustrated in Figure 3.1, in which we compare the packet

payloads observed by Shark for Root (a network traffic sniffer for 3G and

30

0 10 20 30 40 50
0

5000

10000

cu
m
ul
at
iv
e
tc
p.
le
n
in
by
te
s

packet sequence

tcp_snd
shark for root

the total length of two packets

Figure 3.1: Monitor tool precision

WiFi) [31], when the user is using Yahoo! Finance, with the cumulative

outbound data usage detected by our usage monitor.

From the figure 3.1 we can see that most of the time, our monitor can

separate different packets from each other. However, there are situations

in which only the cumulative length of multiple packets is identified (see

the markers in the figure). This requires an analysis that can tolerate such

non-determinism, which we discuss later.

In terms of performance, our monitor has a very small memory footprint,

only 28 MB, even below that of the default Android keyboard app. When it

is running at its peak speed, it takes about 7% of a core’s cycles on a Google

Nexus S phone. Since all the new phones released today are armed with

multi-core CPUs, the monitor’s operations will not have noticeable impacts

on the performance of the app running in the foreground as demonstrated

by a test described in Table 3.1 measured using AnTuTu [2] with a sampling

rate of 10Hz for network usage 3.2 and 50Hz for audio logging (Section 3.4).

To make this data collection stealthier, we adopted a strategy that samples

intensively only when the target app is being executed, which is identified

through ps (Section 3.1). The UI of the monitor tool is shown in Figure 3.2.

However, the monitor cannot always produce deterministic outcomes: when

sampling the same packet sequence twice, it may observe two different se-

quences of increments from the usage statistics. To obtain a reliable traffic

fingerprint of a target app’s activity we designed a methodology to bridge

the gap between the real sequence and what the monitor sees.

Our approach first uses Shark for Root to analyze a target app’s behavior

31

Figure 3.2: Monitor tool UI

(e.g., click on a button) offline - i.e in a controlled context - and generate

a payload-sequence signature for its behavior. Once our monitor collects a

sequence of usage increments from the app’s runtime on the victim’s Android

phone, we compare this usage sequence with the signature as follows. Con-

sider a signature (· · · , si, si+1, · · · , si+n, · · ·), where si,··· ,i+n are the payload

lengths of the TCP packets with the same direction (inbound/outbound),

and a sequence (· · · ,mj, · · ·), where mj is an increment on a usage statis-

tic (tcp rcv or tcp snd) of the direction of si, as observed by our monitor.

Suppose that all the elements before mj match the elements in the signature

(those prior to si). We say that mj also matches the signature elements if

either mj = si or mj = si + · · ·+ si+k with 1 < k ≤ n. The whole sequence is

considered to match the signature if all of its elements match the signature

elements.

Table 3.1: Performance overhead of the monitor tool: there the baseline is
measured by AnTuTu [2]

Total CPU GPU RAM I/O
Baseline 3776 777 1816 588 595

Monitor Tool 3554 774 1606 589 585
Overhead 5.8% 0.3% 11.6% -0.1% 1.7%

32

For example, consider that the signature for requesting the information

about a disease condition ABSCESS by WebMD is (458, 478, 492→), where

“→” indicates outbound traffic. Usage sequences matching the signature can

be (458, 478, 492→), (936, 492→) or (1428→).

The payload-sequence signature can vary across different mobile devices,

due to the difference in the User-Agent field on the HTTP packets produced

by these devices. This information can be acquired by a zero-permission

app through the android.os.Build API. The User-Agent is related to the

phone’s type, brand and Android OS version. For example, the User-Agent

of the Yahoo! Finance app on a Nexus S phone is:

User-Agent: YahooMobile/1.0 (finance; 1.1.8.1187014079); (Linux; U;

Android 4.1.1; sojus

Build/JELLY BEAN);

Given that the format of this field is known, all the adversary needs, is

a set of parameters (type, brand, OS version etc.) for building up the

field, which is important for estimating the length of the field and the pay-

load that carries the field. Such information can be easily obtained by a

zero-permission app, without any permission, from android.os.Build and

System.getProperty("http agent").

3.2.2 Health Data

In this section, we show that the data-usage statistics our zero-permission

app collects leak out apps’ sensitive inputs, e.g., disease conditions a user

selects on WebMD mobile [32]. This has been achieved by fingerprinting her

actions with data-usage sequences they produce. The same attack technique

also works on Twitter 3.2.3 and Yahoo! Finance 3.2.4.

WebMD mobile is an extremely popular Android health and fitness app,

which has been installed 1 ∼ 5 million times in the past 30 days [32]. To

use the app, one first clicks to select 1 out of 6 sections, such as “Symptom

Checker”, “Conditions” and others as seen in Figure 3.3. In our research,

we analyzed the data under the “Conditions” section, which includes a list

of disease conditions (e.g., Asthma, Diabetes, etc.). Each condition, once

clicked on, leads to a new screen that displays the overview of the disease,

its symptoms and related articles. As we can see from Figure 3.4, all such

33

Figure 3.3: WebMD: First Screen Figure 3.4: WebMD: A Condition’s
Screen

information is provided through a simple, fixed user interface running on the

phone, while the data there is downloaded from the web. We found that the

changes of network usage statistics during this process can be reliably linked

to the user’s selections on the interface, revealing the disease she is interested

in.

Attack Methodology

We first analyzed the app offline (i.e. in a controlled context) using Shark

for Root, and built a detailed finite state machine (FSM) for it based on

the payload lengths of TCP packets sent and received when the app moves

from one screen (a state of the FSM) to another. The FSM is illustrated

in Figure 3.5. Specifically, the user’s selection of a section is characterized

by a sequence of bytes, which is completely different from those of other

sections. Each disease under the “Conditions” section is also associated with

a distinctive payload sequence.

In particular, every time a user clicks on a condition she is interested in,

there are a number of requests being generated: 3 POST {p1, p2, p3} requests

which correspond to Overview, Symptoms and Related Articles and 4 GET

34

1
.
M
a
in

M
e
n
u

1
.6
S
ig
n
In

1
.7
S
e
tt
in
g
s

1
.1

S
ym

p
to
m

C
h
e
ck
e
r

1
.2

C
o
n
d
iti
o
n
s

1
.5
L
o
ca
l

H
e
a
lth

1
.2
.1

A
b
sc
e
ss

1
.2
.2
A
C
L

kn
e
e
in
ju
ry

1
.2
.2
7
B
re
a
st

ca
n
ce
r
(m
a
le
)

1
.2
.2
0
4

W
e
rn
ic
le

S
yn
d
ro
m
e

5
8
6

,
5
3
1

11
6
8

,
1
0
6
2

1
9
6

,
4
7
0

6
9
8

,
5
3
0

3
3
3
3

,
9
5
2
7

1
4
9
6

,
3
5
0
0

xx
x
A
dv
er
tis
em

en
tr
el
at
ed

tr
af
fic

x
x
x
P
O
S
T
re
qu
es
t-
C
on
di
tio
n
sp
ec
ifi
c

x
x
x
C
on
di
tio
n
sp
ec
ifi
c
re
sp
on
se
s
to
P
O
S
T
s

O
ut
bo
un
d
tr
af
fic

(f
ro
m
th
e
ap
p
to
th
e
se
ve
r)

In
bo
un
d
tr
af
fic

(f
ro
m
th
e
se
rv
er
to
th
e
ap
p)

6
2
4
,
3
4
0
-3
4
1
,
3
8
5
-4
0
3
,
1
7
4
,
4
5
8
,
4
7
8
,
4
9
2

5
3
0
,
3
3
9
-3
6
8
,
2
1
0
0
±
2
0
0
,
5
1
2
,
3
8
9
8
,
1
0
7
4
,
1
9
9
7

6
3
8
,
3
4
0
-3
4
1
,
3
8
5
-4
0
3
,
1
7
4
,
4
6
4
,
4
8
4
,
4
9
8

5
3
0
,
3
3
9
-3
6
8
,
2
1
0
0
±
2
0
0
,
5
1
2
,
4
2
3
1
,
5
3
5
,
1
9
5
6

6
5
7
,
3
4
0
-3
4
1
,
3
8
5
-4
0
3
,
1
7
4
,
4
7
1
,
4
9
1
,
5
0
5

5
3
0
,
3
3
9
-3
6
8
,
2
1
0
0
±
2
0
0
,
5
1
2
,
2
5
4
4
,
4
7
2
,
1
8
5
2

6
4
3
,
3
4
0
-3
4
1
,
3
8
5
-4
0
3
,
1
7
4
,
4
6
8
,
4
8
8
,
5
0
2

5
3
0
,
3
3
9
-3
6
8
,
2
1
0
0
±
2
0
0
,
5
1
2
,
3
2
0
2
,
4
8
4
,
1
7
1
0

Figure 3.5: WebMD Finite State Machine

35

0 10 20 30 40
0

10

20

bins

co
u

n
ts

Figure 3.6: First Order Traffic Classification of WebMD’s conditions

requests for ads and tracking. The 4 GETs can be readily filtered out due to

their fixed packet sized with small variations, e.g., the GET ads/dcfc.gif

is always 174 bytes and the size of GET event.ng/type=... is always 391-

415 bytes. Interestingly, different from what has been observed from the

browser-based web applications [33], whose information leaks typically hap-

pen through the responses, for the simple app studied here, even the sizes

of its request payloads give away enough information for a first order clas-

sification of all 204 conditions into 32 categories with 4 conditions being

already uniquely identified (see Figure 3.6). Table 3.2 shows an example of

distinct transmission traffic patterns between ”Anemia. iron deficiency” and

“Vulvodynia”.

Furthermore, we denote the corresponding response pattern with {r1, r2, r3}
excluding the ads traffic. The latter gives us some trouble but can be removed

from our analysis also due to its predictable packets pattern, for example it

always contains a 450 ± 100 bytes GIF image and a packet of 2100 ± 200

bytes payload. From the signature {p1, p2, p3 →; r1, r2, r3 ←}, we first utilize

{p1, p2, p3} to classify all 204 conditions into 32 categories using the technol-

ogy in 3.2.1. Subsequently we use the information from {r1, r2, r3} to further

differentiate between conditions of the same category.

In a real attack, however, our zero-permission app cannot see the traffic.

The usage increments it collects could come from the combination of two

packets. For the requests, this problem can be easily addressed using the

36

Table 3.2: WebMD. Comparison of Bytes Transmitted between two
Conditions of different Categories

Anemia, iron deficiency
Request Description Bytes TX
... ...
Get Overview (POST) 474
Get Symptoms (POST) 494
Get Related Articles (POST) 508

Vulvodynia
Request Description Bytes TX
... ...
Get Overview (POST) 461
Get Symptoms (POST) 481
Get Related Articles (POST) 495

technique described in Section 3.2.1, as their payload lengths are fixed and

we can compare an observed increment to the cumulative length of multiple

packets. The approach becomes less effective when we work on the responses,

due to the non-determinism of payload lengths. Fortunately, inter-packet

duration of the inbound traffic is reasonably long, allowing our usage monitor

to accurately identify different payloads most of the time.

Another fact that the adversary must address in a real context is that when

a request is being made from the application to the server, the device’s user

agent is also being sent. This can affect the matching of the offline created

signatures with the data the malicious app collects when the corresponding

devices used differ in model, especially when the attack relies on accuracy

of byte granularity. To compensate for that the malevolent app can readily

acquire the device’s user agent and sent it out to the attacker’s remote server

before it starts emitting any of the previous metrics it records. To be con-

sistent we integrate this piece of functionality to our prototype despite its

trivial nature.

To collect the data the adversary needs to complete her attack we proceed

according to the following methodology: As stated before, using Shark for

Root we have created a detailed map of the states the application can be at

any possible time. We refer to states as screens being displayed to the user

as denoted by the simplified state diagram on Figure 3.5 . For each state of

37

the application we recorded the length of the bytes (TCP payload) that were

sent and received for that screen to be displayed. The recordings are at the

granularity of HTTP requests/responses. This technique would allow us to

distinguish the user’s navigation on the device. To achieve that we used the

outbound traffic because of the requests’ consistency among different itera-

tions of the same experiment. The inbound traffic contained advertisement

data that change as the advertisement being fetched is different every time.

Furthermore this issue is aggravated when a user is visiting disease condi-

tions: For each Condition screen three pieces of disease specific information

are being received. Firstly the application receives the Overview of the dis-

ease, then the Symptoms that appear to a suffering patient and lastly some

links to disease Related Articles redirecting the user for further reading as

shown in Figure 3.4. However some other information relative to the app or

advertisements is being retrieved from different ports of the responding server

or even different servers. If these information responses happen faster than

our tool’s sampling speed then the tool will report multiple response readings

in one record. This makes the break-down of that record to the individual

responses hard especially when multiple conditions receive information that

vary less than the advertisement variation range.

WebMD has 204 available conditions for user perusal (at the time of writ-

ing). Using the payload of the outbound requests we classified them into 32

Categories (Figure 3.6). The request on row 1 of Table 3.3 is specific to the

condition but can vary sometimes: For every such request the condition’s

name is passed as a parameter which results in collisions when the titles

of two different conditions have the same number of HTTP characters. A

specific id is also used for every condition but in most cases is of the same

number of digits. Lastly whether the request was made on a day of the

month that can be described with 1 digit or 2 affects the request. For the

classification we have used the requests made for the three aforementioned

condition specific information, which we mark at the fifth, sixth and seventh

row of the Table...(example of a data collection). Those requests are always

identical when visiting the same Condition. The other requests are common

for all conditions. Nevertheless, some Categories result in a high number of

collisions (many counts per bin on Figure 3.6). To address that we used the

inbound traffic for a second order Classification. With much less possible

candidates - the category’s members - to match our tool’s inbound traffic

38

Table 3.3: WebMD. Traffic Analysis for the ACUTE SINUSITIS condition
navigation

ACUTE SINUSITIS
No HTTP Request Bytes TX HTTP Response Bytes RX
1 GET /b/ss/webmdplglobal... 638 HTTP 1/1 200 OK 512
2 GET html.ng/transactionID=.. 341 < ad > < /.. > ∼ 2202
3 GET event.ng/type=.. 415 HTTP/1.1 302

FOUND
349

4 GET ads/dcfc.gif 174 HTTP1/1 200 OK
(GIF87a)

401

5 POST GetOverview 464 < Overview > <
/.. >

9308

6 POST GetSymptoms 484 < Symptoms > <
/.. >

3334

7 POST GetRelatedArticles 498 < Related > < /.. > 4857

recording and based on the fact that our tool’s high sampling rate can help

us distinguish at least a fraction of the responses, we managed to identify all

the Condition visits.

To collect the data and construct tables with inbound and outbound traf-

fic (see Table 3.3) generated with each condition click and also understand

the application protocol in place, we ran a set of experiments. For those

experiments we have used a Google Nexus S 4G device running Android

4.1.1 with root access to the Operating System, available. On the device

we installed Shark for Root which can capture the traffic and generate pcap

files that we can analyze using an appropriate tool such as Wireshark. We

have also installed WebMD and our monitor tool on the device. Before every

experiment, we launch our tool set to monitor WebMD’s traffic’s and Shark

which captures all network traffic on the device. Then we launch WebMD

and navigate to a particular condition. Subsequently we stop our tool and

Shark and analyze the results matching our tool’s recordings with the mea-

surements from Shark. Based on our analysis we generate tables (see table

data sample again) for each condition that hold the Number of Bytes TX

and Number of Bytes RX for each HTTP response and request of WebMD.

For example, the data collected for ”ABSCESS” is shown on Table ().

Attack Evaluation

To evaluate the effectiveness of our attack on WebMD, we repeated our ex-

periments. This time, we didn’t mark our tool’s output with the Condition

39

being visited on the device by the user. Conversely we perform experiments

visiting all available Conditions on WebMD and then use a script that shuffled

the results. Shuffling the results eliminates the possibility that the analyst

remembers the order of condition visiting. By the end of this process we have

performed 221 experiments for 204 available Conditions. Our shuffling tool

rejected 2 outputs which left us with 219 results to analyze. We manually

scrutinized the experiments’ outputs and tried to match the recorded mea-

surements with our data collected offline. According to the bytes received we

can locate the Category of Conditions that particular output corresponds to.

Then we further analyze the inbound traffic to identify the precise condition

in the Category that has similar traffic with the observed one. Our tool’s

sampling rate has been proven instrumental to this effort as in most cases,

a single reading of it could disclose to us one exact match with one of the 3

total Condition relevant responses. Conditions on the same Category rarely

have identical such responses as the information received is very specific to

the Condition they describe.

Out of the 219 available experiments’ outputs we were able to uniquely

identify all 204 Conditions. In 5 cases a Condition was matched twice. This

can be attributed to the fact that network connectivity in some cases rendered

the application unable of retrieving the Condition’s information. In those

cases we had repeated the experiment. Even if the experiment failed in the

sense that it didn’t simulate a normal navigation to a condition, we were

able from the fraction of information received by WebMD and recorded by

our tool, to identify the Condition clicked. Finally, 11 outputs failed to

be identified as a condition and were the result of erroneous clicks by the

user, that inadvertently followed a different path on the application (i.e a

Condition was not visited).

3.2.3 Identity

In joint work with Zhou et al. [23] we show that the data-usage statistics

collected by our zero-permission app, also leak out an Android user’s identity.

A person’s identity, such as name, email address, etc., is always considered to

be highly sensitive [34, 35, 36, 37] and should not be released to an untrusted

party. For a smartphone user, unauthorized disclosure of her identity can

40

immediately reveal a lot of private information about her (e.g., disease, sex

orientation, etc.) simply from the apps on her phone. Here we show how one’s

identity can be easily inferred using the shared resources and rich background

information from Twitter.

Twitter is one of the most popular social networks with about 500 million

users worldwide. It is common for Twitter users to use their mobile phones

to tweet extensively and from diverse locations. Many Twitter users dis-

close there identity information which includes their real names, cities and

sometimes homepage or blog URL and even pictures. Such information can

be used to discover one’s accounts on other social networks, revealing even

more information about the victim according to prior research [38]. We also

performed a small range survey on the identity information directly disclosed

from public Twitter accounts to help us better understand what kind of infor-

mation users disclose and at which extend. By manually analyzing randomly

selected 3908 accounts (obvious bot accounts excluded), we discovered that

78.63% of them apparently have users’ first and last names there, 32.31%

set the users’ locations, 20.60% include bio descriptions and 12.71% provide

URLs. This indicates that the attack we describe below poses a realistic

threat to Android users’ identity.

Attack Methodology

In our attack, a zero-permission app monitors the mobile-data usage count

tcp snd of the Twitter 3.6.0 app when it is running. When the user send

tweets to the Twitter server, the app detects this event and send its times-

tamp to the malicious server stealthily. This gives us a vector of timestamps

for the user’s tweets, which we can then use to search the tweet history

through public Twitter APIs for the account whose activities are consistent

with the vector: that is, the account’s owner posts her tweets at the moments

recorded by these timestamps. Given a few of timestamps, we can uniquely

identify that user. An extension of this idea could also be applied to other

public social media and their apps, and leverage other information as vector

elements for this identity inference: for example, the malicious app could be

designed to figure out not only the timing of a blogging activity, but also the

number of characters typed into the blog through monitoring the CPU usage

of the keyboard app, which can then be correlated to a published post.

41

To make this idea work, we need to address a few technical challenges.

Particularly, searching across all 340 million tweets daily is impossible. Our

solution is using less protected data, the coarse location (e.g, city) of the

person who tweets, to narrow down the search range (see Section 3.3 for an

attack that allows an adversary to gain such information).

To fingerprint the tweeting event from the Twitter app, we use the afore-

mentioned methodology to first analyze the app offline to generate a sig-

nature for the event. This signature is then compared with the data usage

increments our zero-permission app collects online from the victim’s phone

to identify the moment she tweets.

Specifically, during the offline analysis, we observed the following TCP pay-

load sequence produced by the Twitter app: (420|150, 314, 580–720). The

first element here is the payload length of a TLS Client Hello. This message

normally has 420 bytes but can become 150 when the parameters of a recent

TLS session are reused. What follow are a 314-byte payload for Client Key

Exchange and then that of an encrypted HTTP request, either a GET (down-

load tweets) or a POST (tweet). The encrypted GET has a relatively stable

payload size, between 541 and 544 bytes. When the user tweets, the en-

crypted POST ranges from 580 to 720 bytes, due to the tweet’s 140-character

limit. So, the length sequence can be used as a signature to determine when

a tweet is sent.

As discussed before, what we want to do here is to use the signature to

find out the timestamp when the user tweets. The problem here is that

our usage monitor running on the victim’s phone does not see those packets

and can only observe the increments in the data-usage statistics. Our offline

analysis shows that the payload for Client Hello can be reliably detected by

the monitor. However, the time interval between the Key-Exchange message

and POST turns out to be so short that it can easily fall through the cracks.

Therefore, we have to resort to the aforementioned analysis methodology

(Section 3.2.1) to compare the data-usage sequence collected by our app with

the payload signature: a tweet is considered to be sent when the increment

sequence is either (420|150, 314, 580–720) or (420|150, 894–1034).

From the tweeting events detected, we obtain a sequence of timestamps

T = [t1, t2, · · · , tn] that describe when the phone user tweets. This sequence

is then used to find out the user’s Twitter ID from the public index of tweets.

Such an index can be accessed through the Twitter Search API [39]: one can

42

call the API to search the tweets from a certain geo-location within 6 to 8

days. Each query returns 1500 most recent tweets or those published in the

prior days (1500 per day). An unauthorized user can query 150 times every

hour.

To collect relevant tweets, we need to get the phone’s geo-location, which

is specified by a triplet (latitude, longitude, radius) in the twitter search API.

Here all we need is a coarse location (at city level) to set these parameters.

Android has permissions to control the access to both coarse and fine loca-

tions of a phone. However, we found that the user’s fine location could be

inferred once she connects her phone to a Wi-Fi hotspot (see Section 3.3).

Getting her coarse location in this case is much easier: our zero-permission

app can invoke the mobile browser to visit a malicious website, which can

then search her IP in public IP-to-location databases [40] to find her city.

This allows us to set the query parameters using Google Maps. Note that

smartphone users tend to use Wi-Fi whenever possible to conserve their mo-

bile data (see Section 3.3), which gives our app chances to get their coarse

locations. Please note that we do not require the user to geo-tag each tweet.

The twitter search results include the tweets in a area as long as the user

specified her geo-location in her profile.

As discussed before, our app can only sneak out the timestamps it collects

from the Twitter app when the phone screen dims out. This could happen

minutes away from the moment a user tweets. For each timestamp ti ∈ T , we

use the twitter API to search for the set of users ui who tweet in that area in

ti±60s (due to the time skew between mobile phone and the twitter server).

The target user is in the set U = ∩ui. When U contains only one twitter ID,

the user is identified. For a small city, oftentimes 1500 tweets returned by a

query are more than enough to cover the delay including both the ti ± 60s

period and the duration between the tweet event and the moment the screen

dims out. For a big city with a large population of Twitter users, however,

we need to continuously query the Twitter server to dump the tweets to a

local database, so when our app report a timestamp, we can search it in the

database to find those who tweet at that moment.

Table 3.4: City information and Twitter identity exploitation

Location Population City size Time interval covered (radius) # of timestamps

Urbana 41,518 11.58 mi2 243 min (3 mi) 3

Bloomington 81,381 19.9 mi2 87 min (3 mi) 5

Chicago 2,707,120 234 mi2 141 sec (3 mi) 9

43

Attack Evaluation

We evaluated the effectiveness of this attack at three cities, Urbana, Bloom-

ington and Chicago. Table 3.4 describes these cities’ information.

We first studied the lengths of the time intervals the 1500 tweets returned

by a Twitter query can cover in these individual cities. To this end, we

examined the difference between the first and the last timestamps on 1500

tweets downloaded from the Twitter server through a single API call, and

present the results in Table 3.4. As we can see here, for small towns with

populations below 100 thousand, all the tweets within one hour and a half

can be retrieved through a single query, which is sufficient for our attack:

it is conceivable that the victim’s phone screen will dim out within that

period after she tweets, allowing the malicious app to send out the timestamp

through the browser. However, for Chicago, the query outcome only covers

2 minutes of tweets. Therefore, we need to continuously dump tweets from

the Twitter server to a local database to make the attack work.

In the experiment, we ran a script that repeatedly called the Twitter Search

API, at a rate of 135 queries per hour. All the results without duplicates

were stored in a local SQL database. Then, we posted tweets through the

Twitter app on a smartphone, under the surveillance of the zero-permission

app. After obvious robot Twitter accounts were eliminated from the query

results, our Twitter ID were recovered by merely 3 timestamps at Urbana, 5

timestamps at Bloomington and 9 timestamps in Chicago, which is aligned

with the city size and population.

3.2.4 Investment Data

A person’s investment information is private and highly sensitive. Here we

demonstrate how an adversary can infer her financial interest from the net-

work data usage of Yahoo! Finance, a popular finance app on Google Play

with nearly one million users. We discover that Yahoo! Finance discloses a

unique network data signature when the user is adding or clicking on a stock.

44

Attack Methodology

Similar to all aforementioned attacks, here we consider that a zero-permission

app running in the background collects network data usage related to Yahoo!

Finance and sends it to a remote attacker when the device’s screen dims

out. Searching for a stock in Yahoo! Finance generates a unique network

data signature, which can be attributed to its network-based autocomplete

feature (i.e., suggestion list) that returns suggested stocks according to the

user’s input. Consider for example the case when a user looks for Google’s

stock (GOOG). In response to each letter she enters, the Yahoo! Finance

app continuously updates a list of possible autocomplete options from the

Internet, which is characterized by a sequence of unique payload lengths. For

example, typing “G” in the search box produces 281 bytes outgoing and 1361

to 2631 bytes incoming traffic. We found that each time the user enters an

additional character, the outbound HTTP GET packet increases by one byte.

In its HTTP response, a set of stocks related to the letters the user types

will be returned, whose packet size depends on the user’s input and is unique

for each character combination.

From the dynamics of mobile data usage produced by the suggestion lists,

we can identify a set of candidate stocks. To narrow it down, we further

studied the signature when a stock code is clicked upon. We found that

when this happens, two types of HTTP GET requests will be generated, one

for a chart and the other for related news. The HTTP response for news has

more salient features, which can be used to build a signature. Whenever a

user clicks on a stock, Yahoo! Finance will refresh the news associated with

that stock, which increases the tcp rcv count. This count is then used to

compare with the payload sizes of the HTTP packets for downloading stock

news from Yahoo! so as to identify the stock chosen by the user. Also note

that since the size of the HTTP GET for the news is stable, 352 bytes, our

app can always determine when a news request is sent.

Attack Evaluation

In our study, we ran our zero-permission app to monitor the Yahoo! Finance

app on a Nexus S 4G smartphone. From the data-usage statistics collected

while the suggestion list was being used to add 10 random stocks onto the

45

stock watch list, we managed to narrow down the candidate list to 85 possible

stocks that matched the data-usage features of these 10 stocks. Further

analyzing the increment sequence when the user clicked on a particular stock

code, which downloaded related news to the phone, we were able to uniquely

identify each of the ten stocks the user selected among the 85 candidates.

3.3 Side-Channel 2: ARP Info

This Section elaborates on how Android unprotexted local resources can leak

a user’s location. As with all the side-channel attacks, this is work conducted

with Zhou et al. [23].

The precise location of a smartphone user is widely considered to be pri-

vate and should not be leaked out without the user’s explicit consent. An-

droid guards such information with a permission ACCESS FINE LOCATION.

The information is further protected from the websites that attempt to get

it through a mobile browser (using navigator.geolocation.getCurrent

Position), which is designed to ask for user’s permission when this hap-

pens. In this section, we show that despite all such protections, our zero-

permission app can still access location-related data, which enables accurate

identification of the user’s whereabouts, whenever her phone connects to a

Wi-Fi hotspot.

As discussed before, Wi-Fi has been extensively utilized by smartphone

users to save their mobile data. In particular, many users’ phones are in

an auto-connect mode. Therefore, the threat posed by our attack is very

realistic. In the presence of a Wi-Fi connection, we show in Section 3.2.3

that a phone’s coarse location can be obtained through the gateway’s IP

address. Here, we elaborate how to retrieve its fine location using the link

layer information Android discloses.

3.3.1 Location Inference

We found that the BSSID of a Wi-Fi hotspot and signal levels perceived

by the phone are disclosed by Android through procfs. Such information is

location-sensitive because hotspots’ BSSIDs have been extensively collected

by companies (e.g., Google, Skyhook, Navizon, etc.) for location-based ser-

46

vices in the absence of GPS. However, their databases are proprietary, not

open to the public. In this section, we show how we address this challenge

and come up with an end-to-end attack.

Interestingly, in proc files /proc/net/arp and /proc/net/wireless, An-

droid documents the parameters of Address Resolution Protocol (ARP) it

uses to talk to a network gateway (a hotspot in the case of Wi-Fi connec-

tions) and other wireless activities. Of particular interest to us is the BSSID

(in the arp file), which is essentially the gateway’s MAC address, and wireless

signal levels (in the wireless file). Both files are accessible to a zero-permission

app. The app we implemented periodically reads from procfs once every a

few seconds to detect the existence of the files, which indicates the presence

of a Wi-Fi connection.

The arp file is inherited from Linux, on which its content is considered

to be harmless: an internal gateway’s MAC address does not seem to give

away much sensitive user information. For smartphone, however, such an as-

sumption no longer holds. More and more companies like Google, Skyhook

and Navizon are aggressively collecting the BSSIDs of public Wi-Fi hotspots

to find out where the user is, so as to provide location-based services (e.g.,

restaurant recommendations) when GPS signals are weak or even not avail-

able. Such information has been gathered in different ways. Some companies

like Skyhook wireless and Google have literally driven through different cities

and mapped all the BSSID’s they detected to their corresponding GPS lo-

cations. Others like Navizon distribute an app with both GPS and wireless

permissions. Such an app continuously gleans the coordinates of a phone’s

geo-locations together with the BSSIDs it sees there, and uploads such infor-

mation to a server that maintains a BSSID location database.

All such databases are proprietary, not open to the public. Actually we

talked to Skyhook in an attempt to purchase a license for querying their

database with the BSSID collected by our zero-permission app. They were

not willing to do that due to their concerns that our analysis could impact

people’s perceptions about the privacy implications of BSSID collection.

Nevertheless, an adversary can exploit commercial location services that

are being used by their respective apps: Many of those commercial apps that

offer location-based services, need a permission ACCESS WIFI STATE, so they

can collect the BSSIDs of all the surrounding hotspots for geo-locating their

users. In our case, however, our zero-permission app can only get a single

47

BSSID, the one for the hotspot the phone is currently in connection with.

We need to understand whether this is still enough for finding out the user’s

location. Since we cannot directly use those proprietary databases, we have

to leverage these existing apps to get the location. The idea is to understand

the protocol these apps run with their servers to generate the right query

that can give us the expected response.

Specifically, we utilized the Navizon app to develop such an indirect query

mechanism. Like Google and Skyhook, Navizon also has a BSSID database

with a wide coverage [41], particularly in US. In our research, we reverse-

engineered the app’s protocol by using a proxy, and found that there is

no authentication in the protocol and its request is a list of BSSIDs and

signal levels encoded in Base64. Based upon such information, we built a

“querier” server that uses the information our app sneaks out to construct a

valid Navizon request for querying its database for the location of the target

phone.

3.3.2 Attack Evaluation

To understand the seriousness of this information leak, we ran our zero-

permission app to collect BSSID data from the Wi-Fi connections made at

places in Urbana and Chicago, including home, hospital, church, bookstore,

train/bus station and others. The results are illustrated in Table 3.5.

In particular, our app easily detected the presence of Wi-Fi connections

and stealthily sent out the BSSIDs associated with these connections. Run-

ning our query mechanism, we successfully identified all these locations from

Navizon. On the other hand, we found that not every hotspot can be used

for this purpose: after all, the Navizon database is still far from complete.

Table 3.5 describes the numbers of the hotspots good for geo-locations at

different spots and their accuracy.

3.4 Side-Channel 3: Speaker Status

As discussed before, information leaks happen not only on the Linux layer

of Android but also on its API level. This section, reports our study with

Zhou et al, [23] of an audio public API that gives away one’s driving route.

48

Table 3.5: Geo-location with a Single BSSID

Location Total BSSIDs
Collected

Working
BSSIDs

Error

Home 5 4 0ft
Hospital1 74 2 59ft
Hospital2 57 4 528ft
Subway 6 4 3ft
Starbucks 43 3 6ft
Train/Bus Station 14 10 0ft
Church 82 3 150ft
Bookstore 34 2 289ft

3.4.1 Driving Route Inference

Android offers a set of public APIs that any apps, including those without

any permissions, can call. An example is AudioManager.isMusicActive,

through which an app can find out whether any sound is being played by

the phone. This API is used to coordinate apps’ access to the speaker.

This seemingly harmless capability, however, turns out to reveal sensitive

information in the presence of the powerful Google Maps API.

Consider a GPS navigation app one uses when she is driving. Such an

app typically gives turn-by-turn voice guidance. During this process, a zero-

permission app that continuously invokes the isMusicActive API can ob-

serve when the voice is being played and when it is off. In this way, it can get

a sequence of speech lengths for voice direction elements, such as “turn left

onto the Broadway avenue”, which are typically individual sentences. The

content of such directions is boilerplate but still diverse, depending on the

names of street/avenues, and one driving route typically contains many such

direction elements. These features make the length sequence a high dimen-

sional vector that can be used to fingerprint a driving route, as discovered in

our research.

To collect such speech-length sequences, we implemented an audio-state

logger into our zero-permission app. Similar to the data-usage monitor, this

component is invoked only when the target app is found to be running (Sec-

tion 3.2.1). In this case, we are looking for the process com.google.android

.apps.maps, Google’s navigation app. Once the process is discovered, our

49

0 5 10 15 20
2

3

4

5

6

au
di

o
el

em
en

ts
le

ng
th

(s
ec

)

audio sequence

Incomming call noise

Figure 3.7: Audio elements similarity when driving on the same route

app runs the logger to continuously call isMusicActive, with a sampling

rate of 50 per second. Whenever a change to the speaker status is detected,

it records the new status and the timestamp of this event. At the end of

the navigation, the app sneaks out this sequence (see Section 3.1), which is

then used to reconstruct individual elements in the speech-length sequence

through looking for the timestamp of an “on” speaker state with its preced-

ing state being “off”, and the timing for its subsequent state change that

goes the other way around.

Using the audio-status logger, we recorded the speech length sequences

when we drove from home to office three times at Bloomington. Figure 3.7

shows the comparisons among those sequences. Here we consider that two

speech-length elements match if their difference is below 0.05 second, which

is the error margin of the speaker status sampling. As we can see from the

figure, those sequences all match well, except a spike caused by an incoming

call in one trip.

To understand whether such sequences are sufficiently differentiable for

fingerprinting a route, we further built an app that simulates the navigation

process during driving. The app queries the Google Maps API [42] to get a

route between a pair of addresses, which is in the form of a polyline, that is, a

list of nodes (positions with GPS coordinates) and line segments between the

consecutive nodes. Specifically, we turn on the “allow mock gps” option of

an Android phone. This replaces the physical GPS with a simulator, which

replays the gps coordinates of the route to Google Navigator and records the

50

voice guidance along the route to measure the lengths of its speech elements.

In our research, we randomly chose 1000 test routes in Bloomington with

the similar driving time and number of elements as those of the routes for

10 real drives to get their speechlength sequences using our simulator. These

sequences were compared with the length sequences recorded from the real

routes, as illustrated in Figure 3.8. Here we use a variant of Jaccard index,

called overlap ratio, to measure the similarity of two length sequences in a

normalized way: given sequences s and s′ and their longest common subse-

quence s̄, their overlap ratio is defined as R(s, s′) = |s̄|
|s|+|s′|−|s̄| . Figure 3.8

shows the distribution of the ratios between the sequences in real and test

sets (which are associated with different routes) together with the distribu-

tion of the ratios between the speech-length sequences of real drives and the

simulated drives on the same routes. As we can see here, for two differ-

ent routes, their speech-length sequences are very different (mean: 0.1827,

standard deviation: 0.0817), while two identical routes always have highly

similar length sequences (mean: 0.6146, standard deviation: 0.0876). Based

on these two distributions, we set a threshold of 0.5 for determining when

two sequences “match”: that is, they are considered to be related to the same

route.

Figure 3.8 shows that speech-length sequences can effectively fingerprint

their driving routes. A caveat here is that such a sequence should not be too

short. Figure 3.9 illustrates what happens when comparing short sequences

extracted from real driving routes with those of the same lengths randomly

sampled from the 1000 test sequences. We can see here that false positives

(i.e., matches between the sequences from different routes) begin to show up

when sequence lengths go below 9.

3.4.2 Attack Methodology

Given a speech-length sequence, we want to identify its route on the map.

To this end, we developed a suite of techniques for the following attacks:

(1) fingerprinting a few “Points of interest” (PoI) the user might go, such

as hospitals, airport and others, to find out whether the user indeed goes

there and when she goes; (2) collecting a large number of possible routes the

user might use (based on some background information) and searching these

51

0 0.2 0.4 0.6 0.8 1
0

0.05

0.1

0.15

0.2

0.25

overlap ratio

pr
ob

ab
ili

ty

true
false

Figure 3.8: Audio length sequence
distinguishability

2 4 6 8 10
0

0.1

0.2

0.3

0.4

0.5
signature length vs false positive rate

number of audio elements

fa
ls

e
po

si
tiv

e
ra

te

false positive rate

Figure 3.9: False positive rate vs
number of audio elements

routes for the target speech-length sequence.

To fingerprint a PoI, we first find a set of start addresses surrounding

it from Google Maps and then run our driving-simulation app from these

addresses to the target. This gives us a set of speech-length sequences for

the driving routes to the PoI, which we treat as a signature for the location.

To ensure that such a signature is unlikely to have false positives, the start

addresses are selected in a way that their routes to the PoI have at least 10

speech elements (Figure 3.9).

For each speech length sequence received from our zero permission app,

our approach extracts a substring at the end of the sequence according to

the lengths of a target PoI’s signature sequences. On such a substring are

the last steps of the route our app observes, which are used to compare

with the signature. If the substring matches any signature sequences (i.e.,

with an overlap ratio above the threshold), we get strong evidence that the

smartphone user has been to the fingerprinted location.

Locating a user’s driving route on the map can be extremely challenging

given the numerous possible routes. For this purpose, we need some back-

ground knowledge to roughly determine the area that covers the route. As

discussed before (Section 3.2.3 and 3.3), we can geo-locate the user’s home

and other places she frequently visits when her phone is set to auto connect.

At the very least, finding the city one is currently in can be easily done in

the presence of Wi-Fi connection. Therefore, in our research, we assume

that we know the user’s start location or a place on her route and the rough

area (e.g., city) she goes. Note that simply knowing one’s start and destina-

52

tion cities can be enough for getting such information: driving between two

cities typically goes through a common route segment, whose speech-length

sequence can be used to locate the entrance point of the destination city

(e.g., a highway exit) on the length sequence recorded during the victim’s

driving. Furthermore, since we can calculate from the timestamps on the

sequence the driving time between the known location and the destination,

the possible areas of the target can be roughly determined.

However, even under these constraints, collecting speech-length sequences

in a large scale is still difficult: our driving simulator takes 2 to 5 minutes to

complete a 10-mile route in Bloomington (necessary for getting all the speech

elements on the route), which is much faster than a real drive, but still too

slow to handle thousands (or more) of possible routes we need to inspect.

Here we show how to make such a large-scale search possible.

Given a known point on the route and a target area, we developed a

crawler using Google API to download the routes from the point to the

residential addresses in the target area [43]. Each route here comes with

a set of driving directions (e.g. html instructions) in text and an estimated

driving time. Such text directions are roughly a subset of the audio directions

used by Google Navigator for the same route, with some standard road name

abbreviations (“Rd”, “Dr”, etc.).

For each route with text directions, our approach replaces their abbrevia-

tions with the full names [44], calls the Google text-to-speech (TTS) engine

to synthesize the audio for each sentence, and then measures the length of

each audio element. This produces a sequence of speech lengths, which we

call a TTS sequence. Comparing a TTS sequence with its corresponding

speech-length sequence from a real drive (the real sequence), the former is

typically a subset of the latter. An example is illustrated in Table 3.6. Based

on this observation, we come up with a method to search a large number of

TTS sequences, as follows.

We first extract all the subsequences on a real sequence under the con-

straint that two neighboring elements on a subsequence must be within a

distance of 3 on the original sequence: that is, on the real sequence, there

must be no more than 2 elements sitting in between these two elements.

These subsequences are used to search TTS sequences for those with sub-

strings that match them. The example in Table 3.6 shows a TTS sequence

that matches a subsequence on the real sequence. As a result of the search,

53

Table 3.6: Comparison between a Navigation Sequence and a Text
Direction/TTS Sequence

Google Navigator Real
Length

Google Direction API Synthesis
Audio
Length

Turn left onto south xxx street,
then turn right onto west xxx road

4.21 N/A N/A

Turn right onto west xxx road 2.05 Turn right onto west xxx Road 2.15
Continue onto west xxx Road for a
mile

2.53 N/A N/A

In one thousand feet, turn right
onto xxxxx ** north

4.07 N/A N/A

Turn right onto xxxxx ** north 2.74 Turn right onto xxxxx ** north 2.72

we get a list of TTS sequences ranked in a descending order according to each

sequence’s overlap ratio with the real sequence calculated with the longest

subsequence (under the above constraint) shared between them. We then

pick up top TTS sequences, run our simulator on their source and destina-

tion addresses to generate their full speech-length sequences, and compare

them with the real sequence to find its route.

3.4.3 Attack Evaluation

To determine whether our attack can be successfully used to detect a user’s

location, we fingerprinted two PoIs in Bloomington, i.e Bloomington Hospital

and Indianapolis International Airport (IND) using our driving simulator.

For the hospital, 19 routes with at least 10 audio elements on their speech-

length sequences were selected from Google Maps, which cover all the paths

to the place. The airport has only 4 paths to get in and get out, each having

at least 10 audio elements. We first evaluated the false positives of these

signatures with 200 routes with similar lengths, and did not observe any

false match. Then we compared the signatures with 4 real driving sequences

collected by our zero-permission app from the trips to these PoIs (2 for each

PoI), they all matched the right routes in the signatures.

Next, to evaluate whether this attack can be used to identify a driving

route, we tried to locate 10 speech-length sequences our zero-permission app

collected from real drives from a highway exit to 10 random locations in

Bloomington. To this end, we randomly selected 1000 residential addresses

54

from each of the 5 ZIP code areas in the town using the local family web-

site [43] and called the Google Direction API to get the routes from the

highway exit (which was supposed to be known) to these 5000 addresses,

together with the Google driving routes for the 10 real sequences. Then, the

TTS sequences of those 5010 routes were compared with the 10 real-drive

speech length sequences collected by our malicious app. For each real se-

quence, 10 TTS sequences with the highest overlap ratios as described in

Section 4.2.1 were picked out for a validation that involves simulating drives

on these TTS sequences’ routes, measuring their speech-length sequences

and comparing them with the length sequences of the real drives. In the

end, we identified 11 routes using the 0.5 threshold for the overlap ratio (see

Table 3.7). Among them, 8 are true positives, the real routes we drove.

Table 3.7: Route Identification Result. The third column is the highest
overlap ratio of a wrong route within the top 10 TTS sequences. FP
indicates false positive. All FP routes (actually similar routes) are marked
out in Figure 3.10.

Route
No.

result(ratio) Top ratio
of a wrong
route

Notes(error)

1 found (0.813) 0.579 (FP) similar route
(0.2mi)

2 found (1.0) 0.846 (FP) similar route
(0.5mi)

3 found (0.615) 0.462
4 missed 0.412
5 missed 0.32
6 found (0.846) 0.667 (FP) similar route

(0.3mi)
7 found (0.714) 0.415
8 found (0.5) 0.345
9 found (0.588) 0.261
10 found (0.6) 0.292

Also, the 3 false positives are actually the routes that come very close to

the routes of 3 real-drive sequences (see Figure 3.10), with two within 0.3

miles of the real targets and one within 0.5 miles. Note that in all these

cases, the real routes were also found and ranked higher than those false

55

Figure 3.10: Three FP Routes and Their Corresponding TP Routes. Each
FP/TP pair has most of their routes overlapped.

positives. This actually indicates that our approach works very well: even

when the real-drive routes were not among the routes we randomly sampled

on the map (from the highway exit to 5000 random addresses), the approach

could still identify those very close to the real routes, thereby locating the

smartphone user to the neighborhood of the places she went.

In this Chapter we saw how Android local unprotected resources can leak

private information that can adversary can utilize to infer a user’s health

and financial information, her identity, her location and her private route.

The side-channel attacks describe, leverage the system’s erroneous security

design at both the Linux (publicly available files) and the framework layer

(unprotected API). Unfortunately the story does not end here. Android’s

security model is flawed also when it comes to safeguarding its external re-

sources as these are defined in 2.3.2. In the next chapter (4) we elaborate on

such vulnerabilities and demonstrate real-world attacks on popular external

resources.

56

CHAPTER 4

ATTACKS ON EXTERNAL RESOURCES

As a mobile platform Android is equipped with capabilities to use an assort-

ment of external resources. As we seen on Section 2.2, the Android Security

Model only controls the access right on the channel used for communicat-

ing with such external resources, such as Bluetooth, NFC, Audio and audio

devices, SMSs and network information though sockets. As long as an app

acquires a permission for such a channel, it automatically gains access to

any information communicated through it. Specifically, all apps with the

same permission are either affiliated with the same Linux group (GID) in

which case the kernel enforces the access control or being checked whether

they owned the appropriate permission by the framework right before the

appropriate Service decides to return or not the requested data. Neverthe-

less, Android does not have the capability to overhaul any semantics of the

data being requested. For example it will either allow reading all SMSs or

deny reading any of them. For this we content that the security model is too

coarse-grain to satisfy the utility of the apps while preserving the confiden-

tiality of the data originating from external resources.

In joint work [24, 25] we studied the risks associated with this coarse

granularity of the Android security model. On Section 4.1 we take a closer

look at the Bluetooth channel and elaborate on attacks stemming from the

fact that a Bluetooth device is paired with the phone instead of pairing with

the app that actually wants to use it. We will refer to this as the Device

Mis-Bonding Threat or simply DMB. After that we will discuss (see Section

4.2) other risks rising from the coarse granularity of the OS’s security model

and its inherent inability to safeguard the SMS, Audio, NFC and Internet

channel.

57

4.1 Bluetooth Mis-Bonding Attacks

The fundamental cause of the DMB problem is the inadequacy of the Android

security model in protecting external devices. As an example, consider a

medical device that communicates with its Android app using Bluetooth. To

make this happen, the smartphone hosting the app first needs to pair with

the device, which forms a bond between the phone and the device. This

pairing process yields a set of bonding information, which allows these two

devices to connect to each other automatically in the future. The bonding

information includes the external device’s MAC address and its Universal

Unique Identifier (UUID), together with a secret link key for authentication

and encrypted communication (when the devices decide to do so). Note

that such a bond relation is only established on the device level; there is

nothing to prevent an unauthorized app (with Bluetooth permissions) on an

authorized phone from connecting to the device. This permission also makes

the app a member in the net bt admin group. As a result, the unauthorized

app is given the privilege to break the bonding with an authorized medical

device and pair the phone with a malicious one configured with the former’s

bonding information so as to feed fake medical data into a patient’s medical

record (Section 4.1.3).

Given the limitations of the Android security model, device manufacturers

are on their own to address this security risk. One thing they can do is to

design a way to secure the communication between the device and its official

app. An instance we are aware about is the Square credit card reader [7],

which connects to a smartphone through its audio port. Its early version

is vulnerable because every app with audio permission can read from it.

The later one comes with an encryption capability: the reader encrypts the

data (using AES) collected from a credit card using a hard-coded key and

transmits the ciphertext through the phone to the web. Most other devices,

however, do not provide any app-device level protection, as confirmed in our

measurement study (Section 4.1.4), possibly due to the fact that most of

them are simple sensors, without sufficient computing resources to support

cryptographic operations. These devices can upload the data to the online

service through the smartphone, which also provides an interface for the user

to see and analyze their data. Encrypting this data in the device and just

using the phone as a communication relay would severely affect the usability

58

of the device, as the user would not be able to use her phone to see her

data. All the devices we analyzed have apps that display the user data on

the smartphone. Hence, the treatment adopted by Square does not seem to

be suitable for these devices.

4.1.1 Adversary Model and Targeted Bluetooth Devices

In our research, we conducted a study on this under-researched yet critical

security problem. As the first step, our study focuses on Bluetooth health-

care devices, which are becoming increasingly popular in recent years. The

security risks we discovered and the new technique we built are extended to

other types of external devices, as we will see on Section 4.2.

We assume that a malicious app is present on the victim’s Android phone

with both the Bluetooth and Bluetooth Adminstration permissions. These

two permissions are claimed by almost all the Bluetooth-capable apps. For

a data-injection attack, in which a malicious party clones the target device,

we also assume that the fake device can be placed close to the victim’s phone

(within 100 meters).

As mentioned before, our study focuses on Bluetooth devices. Specifically,

we analyze four popular healthcare devices. All of them except the iTher-

mometer are FDA approved Class II medical devices [45], in the category

of X-ray machines, infusion pumps, etc., which are used to deal with real

patient care and life critical information. The first three devices either have

their online services available or are capable of synchronizing the informa-

tion they collect with other cloud based health-services. Here is more detailed

information about these devices:

• Bodymedia Wireless LINK Armband [12] is one of the most popular

activity monitoring systems, which has been used in over 120 clinical

studies [46]. It utilizes four different sensors to collect data about the

user’s motion, temperature, perspiration, etc., for accurate calculation

of calories burned and monitoring of sleep patterns. The output of the

device can be displayed by a mobile app running on Android or iOS,

and further synchronized to an activity manager website. Disclosure of

the data can leak out the user’s health status and daily activities.

59

• Nonin Onyx II 9560 Pulse Oximeter [13] is one of the best wireless

finger pulse oximeters. Along with a smartphone app, it enables clin-

icians to remotely monitor blood-oxygen saturation levels and pulse

rates of the patients with chronic diseases such as Chronic Obstructive

Pulmonary Disease (COPD) or asthma [45]. The device uses Bluetooth

to connect to the smartphone, which can deliver the data to the health

provider, online health services or stored locally for later analysis. The

data collected here is also critical for understanding the patient’s status

and choosing an effective treatment. This device is Microsoft Health-

Vault1 certified [45].

• Entra Health System MyGlucoHealth Blood-Glucose Meter [14] is one of

the most popular glucose monitoring devices. It comes with a complete

diabetes management system (including testing at home) uploading

data to the online account through its Android app, which helps a pa-

tient manage her disease and share this data with her health provider.

Glucose levels determine the amount of insulin to be injected into the

patient’s body, which is private and also life-critical: a wrong amount

of injection can have severe implications, including death [47]. Along

with FDA, this device is also approved by CE2 and is fully HL73 com-

pliant [14].

• iThemometer [48] is an electronic thermometer that works with An-

droid through Bluetooth for personal health or long-distance monitor-

ing of elderly persons or babies. The body temperature is an indicator

for life-threatening conditions like infection.

All these devices involve the user’s critical data, whose confidentiality and

integrity is important to her health and well-being. In the presence of the

malicious insider app, however, we show that such data becomes extremely

vulnerable to the DMB threat.

1Microsoft HealthVault is a free online service for personal health information manage-
ment.

2CE Mark is medical device approval mechanism in Europe.
3HL7 – Health Level Seven International – is a globally interoperable standard for

health information exchange.

60

4.1.2 Data-stealing Attacks

In our research, we investigated the feasibility of data-stealing attacks on

Bluetooth devices, in which a malicious app running on the victim’s phone

attempts to steal sensitive data collected by the target device. The attack

turns out to be more complicated than it appears to be: particularly, de-

pending on the nature of a device, the malicious app needs to capture a

small time window during which the device is on and in proximity, under

the competition of the official app that also wants to make a connection to

the device. Here we describe how we addressed such technical challenges and

designed end-to-end attacks on real devices.

Figure 4.1: Data-stealing Attack

Attack Strategies

Given the BLUETOOTH and BLUETOOTH ADMIN permissions, a malicious app

appears to have all it needs to steal data from these healthcare devices, and

merely because Android does not mediate which app is supposed to connect

to the devices. Any app with access to the channel immediately gets access

to all data communicated through it. In practice, however, the situation

is much more subtle than it appears to be at a first look: a malicious app

must not be oblivious to the fact that the target device could or could not

be in proximity and even when they are, for some of them one needs to

push a button or take some actions to activate their Bluetooth services.

Specifically, the Bodymedia armband is activated a few seconds after it is

61

put on one’s arm; the iThemometer has such a button on it; the Nonin

pulse oximeter turns on when one inserts her finger into the device and

turns off once she takes out her finger; and the MyGlucoHealth meter has

a button for activating the Bluetooth and the meter turns off automatically

after sending data to the phone. Also complicating the attack is the presence

of the official app. Once the official app establishes a socket connection with

the target device, the malicious app cannot directly talk to the device before

this connection is torn down and vice versa.

A straightforward solution is an opportunistic strategy in which the ma-

licious app either periodically invokes the service discovery protocol to find

out whether the target device is in its vicinity or blindly makes repeated con-

nection probes, hoping to get to the device as soon as it shows up. However,

neither of these approaches works well in practice due to alarmingly increas-

ing power usage of the Bluetooth radio, a power-consuming practice that is

usually suggested against [3]. For instance, a user may keep the Bluetooth

communication off to save power. Then, when she wants to use it, she runs a

Bluetooth-capable app that automatically turns on Bluetooth. A malicious

app using this strategy must repeatedly enable Bluetooth to discover the

target device; this consumes more battery power than expected and could

also be noticed by the user, given the presence of the Bluetooth icon on the

top notification bar of the Android phone.

In our research, we adopt a lightweight and stealthy strategy to perform

the surveillance. Simply put, the execution of the device’s official app is a

strong indication that the device is in action and also within the connection

range of the target device. Based on this observation, the malicious app can

keep checking when any of the target apps launches, an event that can be

used to trigger an attempt to catch the window of opportunity. Specifically,

our app, which works as a service in the background, periodically runs the

Android API getRunningTasks() to get the app running in the foreground

in constant time O(1). This needs an additional permission GET TASKS. Alter-

natively, we can use getRunningAppProcesses(), which does not need any

permission, but returns a list of running processes in an unspecified order

that the malicious app needs to traverse in search for the target app, which

takes O(n) running time, where n is the number of concurrently-running pro-

cesses on the phone. The same result can be achieved by executing the Linux

command ps. After the malicious app determines that one of the target

62

apps is in the foreground, it attempts to establish a Bluetooth connection

with its respective device.

A catch here is that, when the official app is in communication with the

target device, the malicious app cannot connect to it. To get the data, the

malicious app needs to connect to the device right before this legitimate

connection is established, right after it completes, or during some disruption

of the connection. Below we summarize these options:

• Pre-connection. The official apps of these devices, once executed, of-

ten need the user’s intervention to start the communication with their

devices. For example, all the apps for the MyGlucoHealth, iThermome-

ter and the Bodymedia armband have a soft button that needs to be

pushed to initiate the connection. These apps can also be configured

to attempt automatic connections to their respective devices as soon as

they are launched. Therefore, in order to capture data from the target

device, the malicious app should be in position to exploit the time gap

between the moment it discovers that the target app is running and

the moment when the legitimate connection is established (after the

soft button is pushed or the automatic connection goes through). The

likelihood of this succeeding is contingent on how frequently the mali-

cious app checks currently-running processes, i.e., its sampling rate for

monitoring the official app.

• Post-connection. After discovering the running official app, the mali-

cious app can simply wait until its connection ends and then immedi-

ately connect to the device. This strategy avoids aggressive monitoring

of the official app: the malicious app can keep a slow sampling rate,

as long as it can still detect the target during its execution. There is

a risk, however, that the user turns off the target device before exiting

its app. When this happens, the adversary loses the chance to get data

at that specific point.

• Disruption. The malicious app can disrupt the legitimate app’s commu-

nication by deactivating Bluetooth on the phone. It can then reactivate

the channel and immediately make a connection to the target device.

During this attack, the user might observe the disruption and have

to manually click the button on the app again to resume data collec-

63

tion. The approach makes the attack less stealthy but more reliable in

getting the data from the target device.

Here we elaborate how we utilize these techniques to launch data-stealing

attacks on the healthcare devices.

Attack Implementation

In our study, we execute the data-stealing attacks on all four healthcare de-

vices. To prepare for the attacks, we analyzed the code of these devices’

official apps and their Bluetooth traffic captured using hcidump [49] to fa-

cilitate our understanding of their protocols (for talking to the devices), and

further built these protocols into the malicious app. During its operation,

the malicious app calls the getBondedDevices() API to get a list of ex-

ternal devices already paired with the phone and their bonding information,

including the name, the MAC address and the UUID of the device of interest.

Using such information, the malicious app makes RFCOMM connections to

the device to download sensitive user data.

The attack strategy we implement includes a surveillance component that

periodically calls the API getRunningTasks() to monitor the execution of

the device’s official app twice per second. With this implementation, our app

can keep a low profile incurring, on average, around only 3mW of extra power

consumption. In the meantime, given that human interventions (clicking on

a button after the app is activated) can take seconds, our app stands a good

chance of capturing the time window before the official app establishes a

connection to its device. In case, automatic connection is configured on the

target apps, there is a race condition on the socket establishment. To make

sure that we do not miss the opportunity to capture data when a target

app is launched, our design incorporates both the pre-connection and the

post-connection strategies: as soon as the malicious app finds that the target

app is running, it first makes a connection attempt; if not successful, the app

listens for the asynchronous ACTION ACL DISCONNECTED event broadcasted by

the OS, which notifies the app once a low level –(Asynchronous Connection-

Less (ACL)– connection with a remote device ends, and then tries to connect

to the target device again if the device is the one disconnected and the

disconnection is not caused by the malicious app itself. If either the pre-

64

connection or post-connection attempt succeeds, the malicious app requests

and captures the data from the appropriate external Bluetooth device, sends

them to the adversary and closes the connection, to make it available to the

legitimate app.

It is particularly tricky when the official app is configured to automatic

connections: once the pre-connection attack succeeds, the malicious app

rapidly finishes its operations and releases the socket that is almost instantly

captured by the legitimate app. This causes the OS to miss reporting the

DISCONNECT event and the consecutive CONNECT. Hence, when the le-

gitimate app releases the socket, the malicious app believes that the dis-

connection is initiated by itself. As a result, it skips the post-connection

opportunity and thus misses the new data the device collects during the pe-

riod of the legitimate app’s connection. To address this issue, we designed

the malicious app to check whether enough time elapses from the moment it

sends out a disconnection request to when it receives a disconnection event

from the OS; if so, the app believes that the event it gets is about another

app and then goes ahead to make another connection attempt.

Effectiveness Evaluation

We run the malicious app on a Nexus 4 development phone running JellyBean

(4.2), together with all target devices’ apps. We evaluated the effectiveness

of the data-stealing attack by observing the success rate when the apps were

configured to initiate automatic connections to their respective devices once

launched. This is the worst case scenario as this operation is much faster than

its alternative where the user must click a button to initiate such connections,

hence the window of opportunity is smaller for the pre-connection attempt.

Our study shows that the malicious app is often successful in capturing this

window. The experimental results are presented in Table 4.1.

For the Bodymedia armband device, we found that in 100 pre-connection

trials, the malicious app managed to connect 99 times to the device, get the

sensitive data and send them to a remote server. The case that the connection

failed was attributed to a device de-synchronization issue that rendered even

the official app unable to connect to it. We achieve this high success rate

because the Bodymedia Link Armband mobile app does some pre-processing

operations before attempting to connect to its device, which gives enough

65

time for the malicious app to perform its operations and release the socket.

The success rates were also high for other apps, except for iThermometer

(e.g., 42 out of 100 trials) due to its app’s prompt response in establishing

Bluetooth socket connections. When the malicious app won the race, the

authorized app failed to connect but it automatically retried after 10 seconds,

and succeeded as this interval was often enough for the malicious app to finish

its task and release the socket. The post-connection attacks succeeded most

of the time except for the glucose meter, MyGlucoHealth, as long as the

devices were switched off after the official apps stopped. MyGluooHealth

automatically turns itself off after sending data to its app to save its battery

power, so none of the post-connection attacks on it succeeded. We also tried

the disruption strategy, which also worked, allowing our app to discontinue

the official app’s connection and get the health data. A problem with this

attack strategy, as discussed before, is that the legitimate connection needs

to be interrupted, which could be noticed by the user.

Table 4.1: Success rate of data-stealing attack. This table depicts the
successful connections made by the malicious app on 100 trials.

Target Device Pre-connection Post-connection
Bodymedia LINK Armband 99/100 100/100

iThermometer 42/100 100/100
Nonin Pulseoximeter 99/100 92/100

myGlucoHealth 100/100 0/100*

*the device turns off few seconds after sending data to the phone.

Power Consumption Evaluation

A rough estimation of the power consumption of different surveillance strate-

gies is important for understanding the stealthiness of the malicious app, be-

cause this activity dominates all of its operations in terms of the time interval

that it has to run. We tested the different options we had. We evaluated

getRunningTasks (the strategy we implemented in the malicious app) and

its alternatives including calling getRunningAppProcesses() and making re-

peated attempts to connect to or check the existence of the target Bluetooth

device. We ran the app using each strategy independently for 10 minutes.

The average power consumption of the strategy under scrutiny is illustrated

66

Table 4.2: Average power consumption over 10 minutes per surveillance
technique using PowerTutor[3].

Technique Avg Power Con-
sumption

Sampling Rate

getRunningAppProcesses() 8mW 2 samples/s
getRunningTasks() 3mW 2 samples/s
connect() 17mW 0.18 samples/s
startDiscovery() 15mW 0.054 samples/s

Table 4.3: Average power consumption over an hour. Comparison between
our surveillance technique and 2 popular applications using PowerTutor[3].

Technique Avg Power Consumption
Facebook 18mW
getRunningTasks() 3mW
Gmail 1mW

in Table 4.2. As depicted, the one we decided to adopt (getRunningTasks)

turned out to be both much more efficient and stealthier (as the Bluetooth

sign appears on the screen only when it is supposed to be, i.e., when the the

official app is running). We further compared the power consumption of this

strategy with that of two popular apps, as described in Table 4.3. As we

can see here, our surveillance strategy has a comparable power-consumption

level (3mW) as those apps (1 to 18mW). Accurate power consumption mea-

surement is not required to do this evaluation, we only need rough relative

power measurement. The software we used for the power consumption eval-

uation provides accurate measurement for a very limited number of phones

and rough measurements for all Android phones. This rough measurement

suffices for this evaluation.

4.1.3 Data-injection Attacks

In addition to the threat of the data-stealing attacks, we found that the

presence of the insider, the malicious app, on the phone also makes it possible

to inject fake data into the device’s official app and its online account for the

user. This part will elaborate on our attack strategy, technical challenges we

had to overcome and the evaluation of our implemented attack.

67

Attack Strategy

The data-injection attack works as follows:

1. The malicious app first uses its Bluetooth permissions to gain access

to the channel and collect part of the bonding information for the

target device. Then it delivers the information to the adversary either

using the INTERNET permission which will allow it to use the network

sockets or by invoking the browser with the adversary’s remote domain

and the stolen data encapsulated into it (e.g with JSON).

2. The adversary clones the device using the bonding information (MAC

address, UUID and device name) and places the clone in the neighbor-

hood of the original device or other places where the user may come

close. With a standard Class 1 Bluetooth device, the clone can stay as

far as 100m from the phone.

3. When the user gets into the clone’s Bluetooth transmission range, the

malicious app resets the link key (in the presence of secure communi-

cation) by unpairing the phone from the original device and pairing it

with the clone, then it invokes the target app (if it is not already run-

ning). The clone then talks to the official app and transmits falsified

data to the app.

4. To make the attack stealthy, the malicious app can choose to pair the

phone back with the original device after the attack, thus the phone user

will not notice that her device has been unpaired. This succeeds most

of the time, as the PIN for most Bluetooth devices is either “0000” or

“1234” [50]. It should be noted that the original Bluetooth device does

not need to be discoverable for pairing, as long as its MAC address

is known. Moreover, most of the new devices with Bluetooth 2.1+

use Secure Simple Pairing (SSP) [51], which does not need any user

intervention for pairing.

To make this attack happen, we need to address a few technical challenges,

particularly, how to clone the original device, how to stealthily reset the link

key when secure connections are in use, and how to connect to the spoofed

device in the presence of the original one. Here we elaborate these problems

and our solutions.

68

Figure 4.2: Normal Scenario Figure 4.3: Adversary injecting fake
data

Addressing Technical Challenges

To clone a Bluetooth device, all an attacker needs is the target device’s

name, MAC address and UUID. As discussed before, such information can

be easily obtained by calling Android’s getBondedDevices() method of

BluetoothAdapter class [52], which gives a list of devices paired with the

phone and their bonding data. In our experiment, we ran SpoofTooph

[53] on a Linux laptop that masqueraded the original device using its name,

MAC and class (i.e., UUID). The spoofed device can be placed wherever the

user may come close if the official app of the original device does not have a

soft button for activating its Bluetooth connections. An example here is the

Bodymedia armband in automatic connection mode. Otherwise, the adver-

sary needs to set it up in the vicinity of the original device. The presence

of two devices with the same name, MAC and UUID is hard to detect, as

Bluetooth scanners show only one of them. Also, the spoofed device can be

much further away from the user’s phone than the original device (even out-

side the door) and still ensure the success of the attack, which we elaborate

later in this section.

What gives trouble to this data-injection attack is the link key stored in

the operating system that the malicious app cannot get. The link key is

used to encrypt Bluetooth packets when the device’s official app invokes

createsecureRfcommSocket. Without knowing this piece of information,

the clone cannot talk properly with the app. This is not always a problem:

an app can connect to its device without encryption protection (through

createInsecureRfcommSocket) and even some devices that offer encryption

may not provide adequate security. Consider the Nonin pulse oximeter as

an example. Its app first tries secure connections, but, if this attempt fails,

the app automatically switches to the insecure channel to ensure that the

69

communication can still go through. However, for the device that always

sticks to the secure channel, an attacker needs a way to circumvent the

defense provided by the link key.

Here is our strategy: if we cannot get the link key, we can simply replace

it, setting it to one known to our spoofed device. Given the Bluetooth and

Bluetooth ADMIN permissions, the malicious app can easily unpair the phone

from any Bluetooth device by calling the API IBluetooth, which removes

the current link key shared with the device. To enable the official app to

talk to the clone, however, we need to pair it with the spoofed device. This

operation sets a new link key for the clone, which requires the user to enter a

PIN to authenticate her phone to the device. (Note that the PIN here is for

device-device authentication, not app-device authentication). The PIN itself

is not a big issue, as the clone will accept whatever it receives.4 The problem

is that there is no public Android API for programmatically entering the

PIN. The phone user’s intervention seems inevitable.

A close look at Android source code, however, shows that the OS has a hid-

den interface that allows entering a PIN programmatically. All we need to do

here is to find a way to use it. The APIs provided by Android communicate

with different system services through IPC (Inter-Process Communication)

calls 2.4, based on those services’ interfaces specified by Android Interface

Definition Language (AIDL). Actually, a method setPin() under Android

IBluetooth API (Android’s private API for Bluetooth services) can be used

to programmatically input the PIN. The problem is that this interface is not

open to ordinary apps. In our research, we managed to get this interface by

using a technique [54] that retrieves the AIDL description of the method from

the Android source code and then compiles it together with the code of the

malicious app. As a result, the interface becomes visible to the app. Through

the interface, a PIN can then be automatically entered for a Bluetooth pair-

ing. To avoid showing any user interfaces that might arouse suspicion from

the phone user, the app performs this pairing operation when the screen is

off, which can be determined without requesting any permission [23]. We

provide a demonstration of this attack on a web page [55].

Another technical challenge comes from some apps’ soft buttons, which

needs to be clicked by the phone user to initiate their Bluetooth communi-

4After the attack, if the malicious app wants to restore the pairing with the original
device, oftentimes a default PIN (0000 or 1234) works just fine [50].

70

cation with the devices. All four device apps we studied can be set in this

“button” mode. In this case, automatic triggering of those apps’ Bluetooth

connections is difficult. Therefore we have to place the clones somehow close

to their original devices (within tens of meters), in hopes that when the user

starts running the official apps, they will mistakenly talk to the clones. This

turns out to be pretty realistic: we found that we can set the spoofed device

in a way that it almost always wins this connection race, as elaborated below.

A Bluetooth device typically waits for a smartphone to initiate a connec-

tion. During this waiting process, it continues to switch between two modes,

page sleep where it sleeps to save power [56] and page scan where it wakes up

to look for connection requests. This process is called paging. Let Tsleep be

the time interval between two scans and Tscan the duration of a scan. Obvi-

ously, a larger Tscan and a smaller Tsleep lead to more power consumption, but

are more likely to timely respond to the phone’s connection requests. Ac-

cording to Bluetooth specifications [56, 57], these parameters are supposed

to be set such that 11.25ms ≤ Tsleep ≤ 2.56s and 10.625ms ≤ Tscan ≤ Tsleep.

For most Android external devices, including all those used in our research,

their parameters are chosen for power saving and cannot be modified by the

user. The adversary, however, can be more aggressive. In our research, we

used the Linux configuration tool hciconfig to set these parameters for the

Bluetooth dongle on our attack laptop to Tscan = 11.25ms and Tsleep = 1.28s,

and ran this spoofed device against all four healthcare devices. We found

that the clone almost always won such connection races. This happened

even when the original device was more powerful than the clone in terms of

radio signal strengths. For example, Nonin pulse oximeter [13] is a Class I

Bluetooth device, with a 100mW radio and a range up to 100m, whereas

clone was Class II with a 2.5mW radio and a range up to 10m; even under

such a disparity, the clone always managed to first connect to the phone even

behind a wall and 7m away.

Effectiveness Evaluation

In our research, we implemented the attack and evaluated it on our NEXUS

4 phone (Android 4.2, 1.5GHz quad-core CPU and 2GB memory) and the

aforementioned medical devices. The experiments were conducted in the

presence of both the original devices and their clones (a VM with Intel Core

71

Table 4.4: Data-injection attack launched 1ft and 20ft away from the
victim’s phone, with the original device touching the phone. In both cases,
the experiments were repeated 100 times.

Distance of cloned device 1 ft 20 ft*

Number of observations 100 100
Distance of original device 0 ft 0 ft

No. of times original device responded 0 0
No. of times cloned device responded 100 100

* with a wall in between

i7 CPU (shared), 1GB memory, a Bluetooth 2.0 dongle), though this is un-

necessary when these devices’ apps are in the automatic connection mode

that enables the malicious app to trigger them to automatically connect to

the clones whenever the phone user comes close to the spoofed devices. To

make our attacks realistic, we deliberately placed the original devices closer

to the phone (0 feet) than the spoofed ones (20 feet away, with a wall in-

between). Among all 100 executions of the official apps, the phone was

always first connected to the clones, despite their larger distance from the

phone. The results are presented in Table 4.4. Note that in the presence

of secure connections, the phone cannot talk to the original device after the

reset of the link key. When this happens, however, the phone will get a no-

tification of connection failure if the response from the original device comes

first. In our experiment, we never observed such a notification: each time,

the phone always smoothly established a connection with the clone.

In all the tests, our app first unpaired the phone from the original device

and then paired it with the clone, using a random PIN as an input. All

these unpairing and pairing attempts succeeded. Once a connection was

established, we observed that the spoofed device easily dumped fake data

into the official app, this data was displayed on the phone or the web page

for the user’s account. A demo is posted online [55].

4.1.4 Measuring the DMB threat

As discussed before, the DMB problem comes from the lack of a bonding

between an Android external device and its official app which allows an-

other app with access to the same channel to steal data from the external

resource, or a spurious external resource to inject data into a victim app.

72

Table 4.5: Sampled apps

Total apps 90
Apps not using Bluetooth (eliminated) 2
Device apps with sensitive information 68
Device apps with insensitive information 20

In the absence of OS-level protection, this threat can only be addressed by

the app-device authentication developed by individual device manufacturers.

The design and implementation of such an authentication mechanism, how-

ever, can be non-trivial, which could raise the cost of the devices. To find

out whether such a security measure has already been taken in practice, we

performed a measurement study that analyzed a relevant set of apps from

Google Play. Our study, for which we give details below, reveals that all

of the selected apps are actually vulnerable, indicating that the DMB prob-

lem is indeed realistic and serious. Given the pervasiveness of vulnerable

devices and challenges in fixing them (which could require modifying their

hardware), an OS-level solution becomes inevitable (Sections 5.2,5.3).

To perform our study we collected relevant official apps for different Blue-

tooth devices. Our methodology for collecting those apps is as follows: we

first searched Google Play for those apps compatible with Google NEXUS

4, using the following terms: “Bluetooth Door Lock”, “Bluetooth Health”,

“Bluetooth Medical Devices” and “Bluetooth Meter”. All together, these

queries gave us 90 apps. For each of these apps, we manually inspected its

descriptions to determine whether it received sensitive user data from its

device. Among these 90 apps, 68 involved some private user information,

such as the heart rate, blood pressure, body temperature, glucose level, daily

activities, and so on as summarized in Figure 4.4.

Application Analysis

To avoid purchasing all 68 devices that can be used with our sampled apps,

we analyzed the apps’ code to find out whether they included any app-device

authentication. This analysis was done both automatically and manually, as

follows.

We first decompiled all the 68 apps and searched for authentication-related

programming structures. Authentication should be based upon a secret,

73

Figure 4.4: Classifications of the sampled apps. Some of them collect
information in multiple categories.

which was not hard-coded into any of those apps, given the fact that from

two independent downloads of the same app, we always got the same code and

data. Therefore, such a secret should either come from some external inputs

of the app, particularly its user interfaces, web communication or internal

memory files, or is generated by cryptographic operations. In our study,

we inspected all such potential sources of authentication secrets (Table 4.6)

to determine whether their outputs affected the inputs of the app’s Blue-

tooth communication, particularly that of BluetoothSocket.write, which

transmits data to the device through a Bluetooth socket connection.

We ran a script that used grep to locate the APIs related to those sources

and identified the apps where such APIs only appeared within public li-

braries. For example, we found that, for most apps, their cryptographic

APIs (provided by Java JCE, Bouncy castle and spongycastle [58, 59, 60])

were all included in shared libraries such as Google ads, Twitter authenti-

cation, OAuth, etc. Those libraries are used for specific purposes, getting

ads or performing web-based authentication, for example. It is unlikely that

they be used for authenticating the app to its Bluetooth device. Therefore,

74

we removed all the apps that did not have any of those APIs outside the

public libraries. There were 48 such apps among all we collected.

For the remaining 20 apps, we manually inspected all the occurrences of

these “suspicious” APIs (Table 4.6) in their code. We looked at the functions

where the calls to the APIs were made. It turned out that they were all

used for the purposes having nothing to do with app-device authentication.

For example, most reads from memory files appeared in the crash-handling

mechanisms and most cryptographic operations were performed on the SQL

queries on web databases. We also found that HttpClient was used in the

functions for sharing tweets or getting the user’s workout data from the

web. None of these API outputs were propagated to the inputs of the app’s

Bluetooth communication.

We further installed all the 68 apps and manually inspected their user

interfaces. None of them asked for passwords, PINs, etc. for authenticating

themselves to their corresponding devices.

4.1.5 Study Results

As discussed above, we found no evidence that any of these 68 apps, which

were relevant apps in Google Play, performed any app-device authentication.

Table 4.6 summarizes our findings. The 48 apps we removed automatically

either did not have any suspicious APIs or had such APIs in their shared

libraries, including those for advertising, web authentication, crash analysis,

etc. For the 20 apps we manually analyzed, 9 called cryptographic APIs in

their own code, 5 invoked web APIs and 15 read from memory files. Also,

for all the 68 apps we studied, none had user inputs for app-device authenti-

cation. Again, none of these apps generated any data flow that affected the

inputs of Bluetooth communication functions.

Our study also shows that most of these apps supported secure Bluetooth

communication: 42 apps utilized secure socket only; 12 worked under both

secure and insecure communications and the rest utilized insecure communi-

cation only. This indicates that most of the devices processing sensitive user

data do take privacy protection seriously. However, the presence of malicious

apps with the Bluetooth permissions on Android renders such device-device

authentication insufficient for protecting private user information.

75

Table 4.6: Manual analysis on 20 apps. The other 48 apps were
automatically filtered out by the locations of their suspicious APIs.

Authentication
Methods

Libraries/ Func-
tions used

Total Apps
with app-
device
authenti-
cation

Crypto e.g., javax.crypto,

bouncycastle

9 0

Internal storage e.g.,
openFileInput()

15 0

Web communi-
cation

e.g., HttpClient 5 0

UI for app-
device authenti-
cation

Manual 0 0

Our study on Bluetooth suggests that indeed the Android Security Model

is too coarse-grained to both support the utility of the apps and protect the

confidentiality (even the integrity 4.1.3) of the information communicated

through that channel. These findings led us to study more such channels of

communication with external resources which we report on the next Section

(4.2).

4.2 Other External-Resources Attacks

To understand the significance and the applicability of the problem incurred

to Android due to to unprotected external resources, a study was carried on

other external resources namely NFC, SMS, Audio. For this study we ana-

lyzed a set of prominent accessories and online services that utilize popular

channels, including SMS, Audio and NFC. Our findings echo our previous

findings on on Bluetooth 4.1 and related studies on the Internet (local socket

connections) [22] channels. The latter study found that all no-root third-

party screenshot services can be exploited by a malicious app connecting

to them through the Internet channel. This Section demonstrated that the

SMS, Audio and NFC channels are equally under-protected, exposing private

76

Table 4.7: Critical Examples

Channel App Usage # of down-
loads

Details

AUDIO EMS+ Credit card
reader

5,000 - 10,000 Decrypt : Creates a private key of
RSA with hardcoded modulus and
private exponent. Uses it to load
session key which is used in AES to
process messages from credit card
dongle.

AUDIO UP Tracks sleep,
physical ac-
tivity and
nutritional info

100,000 -
500,000

Doesn’t include any authentication
features. A repackaged app with
different credential is able to read
existing data from the band.

SMS All bank
services

Alert messages
and Text bank-
ing

NA Both SMS can be read by any app
with SMS permission.Alert mes-
sages: sensitive financial activity
and amount info. Text banking:
receive, send money and check bal-
ance.

SMS Chat and
SNS

Authentication 100,000,000 -
1,000,000,000

2 step authentication; verification
code sent via SMS.

NFC SquareLess Credit card
reader

10,000 - 50,000 Reads credit card information.
Malicious apps may also read
credit card data as this app does.

NFC Electronic
Pickpocket
RFID

Credit card
reader

10,000 - 50,000 Reads credit card information.
Malicious apps may also read
credit card data as this app does.

user information like bank account balances, password reset links etc. These

findings point to the security challenges posed by the widening gap between

the coarse-grained Android protection and the current way of using external

resources.

4.2.1 Methodology

To further study channels of communication with external resources, we col-

lected apps from Google Play, choosing those that may access private user

data or perform sensitive operations through Audio or NFC. Specifically, we

searched the Play store for popular apps using these channels and then went

down the list to pick out 13 Audio and 17 NFC apps that could perform

some security-related operations. For SMS, we looked into 14 popular online

services, including those provided by leading financial institutes (Bank of

America, Chase, Wells Fargo, PayPal) and social networks (Facebook, Twit-

ter, WhatsApp, WeChat, Naver Line, etc.), and a web mail (Gmail). Those

services communicate with com.android.sms and sometimes, their own apps

using short text messages.

Table 4.7 provides examples for the apps and services used in our study.

All the services we analyzed clearly involve private user data, so do 6 fitness,

77

credit-card related Audio apps. Some payment related apps using the Audio

jack, are heavily obfuscated and we were not able to decompile them using

popular de-compilation tools (dex2jar, apktool). Most of the other apps in

the Audio category are remote controllers or sensors that work with a dongle

attached to the phone’s Audio jack. Although those devices do not appear to

be particularly sensitive (e.g., the camera that can be commanded remotely

to take pictures), such functionalities (e.g., remote control) could have se-

curity implications when they are applied to control more sensitive devices.

Our study also reveals that Most NFC apps are for reading and writing NFC

tags (tags with microchips for short-range radio communication), which can

be used to keep sensitive user data (e.g., a password for connecting to one’s

Wi-Fi access point) or trigger operations (e.g., Wi-Fi connection). A more

sensitive application of NFC is payment through a digital wallet. However,

related NFC equipment is hard to come by.

Over those apps and services, we conducted both dynamic and static anal-

yses to determine whether there is any protection in place when they use

those channels. For SMS, we simply built an app with the SMS permission

to find out what it can get. All NFC apps were studied using NFC tags, in

the presence of an unauthorized app with the NFC permission. For those in

the Audio category, we analyzed a Jawbone UP wristband, a popular fitness

device whose app (com.jawbone.up) has 100,000 to 500,000 downloads on

Google Play, to understand its security weakness. In the absence of other

Audio dongles, relevant apps were decompiled for a static code inspection to

find out whether there is any authentication and encryption protection dur-

ing those apps’ communication with their external devices. Specifically, we

looked for standard or homegrown cryptographic libraries (e.g., javax.crypto,

BouncyCastle, SpongyCastle) within the code, which are needed for estab-

lishing a secret with the dongles. Also, the apps are expected to process the

data collected from their dongles locally, instead of just relaying it to online

servers, as a few payment apps do. This forces them to decrypt the data if it

has been encrypted. Finally, we ran those apps to check whether a password

or other secrets need to enter for connecting to their dongles. Our analysis

was performed on a Nexus 4 with Android 4.4.

78

4.2.2 Study Results

Our analysis shows that most external resources we studied have not been

protected by apps and service providers. The consequences here can be very

serious, as elaborated below.

Firstly we examine the SMS-based services. As expected, all short mes-

sages leading online services delivered to our Nexus 4 phone were fully ex-

posed to the unauthorized app with the SMS permission. Note that such

messages should only be received by com.android.sms to display their con-

tent to the owner of the phone, as well as those services’ official apps: for

example, Facebook, Naver Line, WeChat and WhatsApp, directly extract a

verification code from their servers’ messages to complete a two-step authen-

tication on the owner’s behalf.

Information leaks through this under-regulated channel are serious and in

some cases, catastrophic. A malicious app can easily get such sensitive in-

formation as account balances, incoming/outgoing wire transfers, debit card

transactions, ATM withdrawals, a transaction’s history, etc. from Chase,

Bank of America and Wells Fargo, authorized amount for a transaction,

available credit, etc. from Chase Credit Card and Wells Fargo Visa, and

notifications for receiving money and others from PayPal. It can also receive

authentication secrets from Facebook, Gmail, WhatsApp, WeChat, Naver

Line and KakaoTalk, and even locations of family members from Life360,

the most prominent family safety online service. An adversary who controls

the app can also readily get into the device owner’s Facebook and Twitter

accounts: all she needs to do is to generate an account reset request, which

will cause those services to send the owner a message with a reset link and

confirmation code. With such information, even the app itself can automat-

ically reset the owner’s passwords, by simply sending requests through the

link using the mobile browser. A video demo of those attacks is posted on-

line [61]. Note that almost all banks provide mobile banking, which allows

enrolled customers to check their account and transaction status through

SMS messages.

Secondly we inspect the risks associated with the Audio channel. To do

that, we analyzed the Jawbone UP wristband [15], one of the most popular

fitness devices that utilize the low-cost Audio channel. The device tracks

its user’s daily activities, when she moves, sleeps and eats, and provides

79

summary information to help the user manage her lifestyle. Such information

can be private. However, we found that it is completely unprotected. We

ran an unauthorized app that dumped such data from the device when it

was connected to the phone’s Audio jack.

For all other apps in the Audio category, we did not have their hardware

pieces and therefore could only analyze their code statically. Specifically,

among all 5 credit-card reading apps, PayPal, Square and Intuit are all heav-

ily obfuscated, which prevented us from decompiling them. Those devices

are known to have cryptographic protection and designed to send encrypted

credit-card information from their card readers directly to the corresponding

web services [62, 63]. The other two apps, EMS+ and Payment Jack, were

decompiled in our research. Our analysis shows that both of them also re-

ceive ciphertext from their card-reader dongles. However, they decrypt the

data on the phone using a hard-coded secret key. Since all the instances of

these apps share the same key, an adversary can easily extract it and use it to

decrypt a user’s credit-card information downloaded from the app’s payment

dongle. Furthermore, all other apps, which either support sensors (e.g, wind

meter) or remote controllers (e.g., remote picture taking), are unprotected,

without authentication and encryption at all.

Lastly lets take a look at NFC. 5 out of 17 popular NFC apps (e.g., NFC

Tools) we found are used to read and write NFC tags. They allow users

to store any data on tags, including sensitive information (e.g., a password

for one-touch connection to a Wi-Fi access point). However, there is no

authentication and encryption protection at all5. We ran an unauthorized

app with the NFC permission to collect the data on the tag whenever our

Nexus phone touched the tag. Note that in the presence of the authorized

app, Android will ask the user to choose the right one each time the tag is

detected6. Although this mechanism does offer some protection, it completely

relies on the user’s judgment during every tap on an NFC device and cannot

be used by system administrators to enforce their mandatory policies.

Among the rest of apps, NFC ReTag FREE utilizes the serial number of

5There are more expensive tags such as MIFARE that support encryption and
authentication. The app using those tags needs the user to manually enter a secret.
Clearly, they are not used for protecting the information like Wi-Fi passwords,
which should be passed to one’s device conveniently.

6More specifically, this happens when both the authorized app and the malicious
app register with the same priority to receive the notification for device discovery.

80

an NFC tag to trigger operations. Again, since the communication through

the NFC channel is unprotected, a malicious app can also acquire the serial

number, which leaks out the operation that the legitimate app is about to

perform. The only NFC app with protection is the NFC Passport Reader.

What it does is to use one’s birth date, passport number and expiration

date to generate a secret key for encrypting other passport information. The

problem is, once those parameters are exposed, the adversary can recover the

key to decrypt the data collected from the NFC channel.

This ends our discussion for this Chapter. We have seen side-channel at-

tacks stemming from unprotected local resources on Android and confused

deputy attacks due to the coarse granularity of the Android Permission

Model. We further seen the prevalence of affected applications highlight-

ing the magnitude of the of the threat. The natural question to follow is:

How do we protect the system and legitimate applications against such at-

tacks? On the next Section 5 we will discuss some strategies to tackle the

side-channel attacks, a defense mechanism called Dabinder which can pro-

tect against Bluetooth mis-bonding attacks and a a system called SEACAT

which places control MAC and DAC access control on the channels of com-

munication with external sources.

81

CHAPTER 5

DEFENCE: GUARDING THE
VULNERABLE LOCAL AND EXTERNAL

ANDROID RESOURCES

Until know, we have been discussing how the Android Security Model is in-

capable of protecting its local and external resources, which lead to a suite

of attacks compromising a user’s privacy 3, and the confidentiality, and in-

tegrity in some cases, of the data being communicated with external sources

4. The natural next step after the exposure of a vulnerability is to try finding

ways to protect against possible attacks. In this Section we will address this

challenge, and discuss solutions we designed and implemented [23, 24, 25].

5.1 Mitigating the Side-Channel Threats on Local

Resources

Given the various unprotected local resources on Android, the information

leaks we found 3 are very likely to be just a tip of the iceberg. Finding an

effective solution to this problem is especially challenging with rich back-

ground information of users or apps gratuitously available on the web. To

mitigate such threats, we first take a closer look at the attacks discovered in

our research. The ARP data (see 3.3) has not been extensively utilized by

apps and can therefore be kept away from unauthorized parties by changing

the related file’s access privilege to system. A simple solution to control the

audio channel (see 3.4) can be to restrict the access to its related APIs, such

as isMusicActive, only to system processes whenever sensitive apps (e.g.

navigation related) are running in the foreground. The most challenging

facet of such a mitigation venture is to address the availability mechanism of

the data usage statistics (see 3.2), which have already been used by hundreds

of apps to help Android users keep track of their mobile data consumption.

Merely removing them from the list of public resources is not an option. In

this section, we report our approach on mitigating the threat deriving from

82

the statistics availability, while maintaining their utility.

5.1.1 Mitigation Strategies

To suppress information leaks from the statistics available through tcp rcv

and tcp snd, we can release less accurate information. Here we analyze a

few strategies designed for this purpose.

One strategy is to reduce the accuracy of the available information by

rounding up or down the actual number of bytes sent or received by an app to

a multiple of a given integer before disclosing that value to the querying pro-

cess. This approach is reminiscent of a predominant defense strategy against

traffic analysis, namely packet padding [33, 64]. The difference between that

and our approach is that we can not only round up but also round down to

a target number and also work on accumulated payload lengths rather than

the size of an individual packet. This enables us to control the information

leaks at a low cost, in terms of impact on data utility.

Specifically, let d be the content of a data usage counter (tcp rcv or

tcp snd) and α an integer given to our enforcement framework implemented

on Android (Section 5.1.2). When the counter is queried by an app, our

approach first finds a number k such that kα ≤ d ≤ (k+ 1)α and reports kα

to the app when d−kα < 0.5α and (k+ 1)α otherwise. We call this strategy

Round up and round down.

A limitation of the simple rounding strategy (Round up and round down)

results from the fact that it still gives away the payload size of each packet,

even though the information is perturbed. As a result, it cannot hide packets

with exceedingly large payloads. To address this issue, we can accumulate

the data usage information of multiple queries, for example, conditions on

WebMD the user looks at, and only release the cumulative result when a time

interval expires. This can be done, for example, by updating an app’s data

usage to the querying app once every week, which prevents the adversary from

observing individual packets. We will refer to this technique as Aggregation.

83

5.1.2 Enforcement Framework

A naive idea to address the leakage of information from Android public lo-

cal resources, would be adding yet another permission to Android’s already

complex permission system and have any data monitoring app requesting

this permission in AndroidManifest.xml. However, prior research shows that

the users do not pay too much attention to the permission list when in-

stalling apps, and the developers tend to declare more permissions than

needed [21]. On the other hand, the traffic usage data generated by some

applications (e.g banking applications) is exceptionally sensitive, at a de-

gree that the app developer might not want to divulge them even to the

legitimate data monitoring apps. To address this problem, our solution is

to let an app specify special “permissions” to Android, which defines how

its network usage statistics should be released. Such permissions, which are

essentially a security policy, was built into the Android permission system

in our research. Using the usage counters as an example, our framework

supports four policies: NO ACCESS, ROUNDING, AGGREGATION and

NO PROTECTION. These policies determine whether to release an app’s

usage data to a querying app, how to release this information and when to

do that. They are enforced at a UsageService, a policy enforcement mech-

anism we added to Android, by holding back the answer, adding noise to it

(as described in Section 5.1.1) or periodically updating the information.

To enable the enforcement of the aforementioned policies in our frame-

work, public resources on the Linux layer, such as the data usage coun-

ters, are set to be accessible only by system or root users. Specifically,

for the /proc/uid stat/ resources, we modified the create stat file in

drivers/mis/uid stat.c of the Android Linux kernel and changed the

mode of entry to disable direct access to the proc entries by any app.

With direct access turned off, the app will have to call the APIs exposed

in TrafficStats.java and NetworkStats.java such as getUidTxBytes()

to gain access to that information. In our research, we modified these APIs

so that whenever they are invoked by a query app that requests a target

app’s statistics, they pass the parameters such as the target’s uid through

IPC to the UsageService, which checks how the target app (uid) wants to

release its data before responding to the query app with the data (which can

be perturbed according to the target’s policy). In our implementation, we

84

0 500 1000 1500
0

50

100

150

200

250

(16,201)
(32,198)
(64,170)

(128,85)

(256,32)
(512,10) (1024,1)

round bytes

N
o.

of
id

en
tif

ia
bl

e
co

nd
iti

on
s

Figure 5.1: Effectiveness of round up/down mitigation technique

deliberately kept the API interface unchanged so existing data monitor apps

can still run.

5.1.3 Defence Evaluation

To understand the effectiveness our technique, we first evaluated the round

up and round down scheme using the WebMD app. Figure 5.1 illustrates

the results: with α increasing from 16 to 1024, the corresponding number

of conditions that can be uniquely identified drops from 201 to 1. In other

words, except a peculiar condition DEMENTIA IN HEAD INJURY whose

total reply payload has 13513 bytes with its condition overview of 11106

bytes (a huge deviation from the average case), all other conditions can no

longer be determined from the usage statistics when the counter value is

rounded to a multiple of 1024 bytes. Note that the error incurred by this

rounding strategy is no more than 512 bytes, which is low, considering the

fact that the total data usage of the app can be several megabytes. Therefore

its impact on the utility of data consumption monitoring apps is very small

(below 0.05%).

We further measured the delay caused by the modified APIs and the new

UsageService on a Galaxy Nexus, which comes from permission checking

and IPC, to evaluate the overhead incurred by the enforcement mechanism

85

we implemented. On average, this mechanism brought in a 22.4ms delay,

which is negligible.

Our defense mechanism is demonstrably efficient and effective when ap-

plies on the traffic usage information. Nevertheless, it is challenging to

come up with a bullet proof defense against all those information leaks

from unprotected local resources for the following reasons. a) Shared re-

sources are present all over the Linux’s file system from /proc/[pid]/,

/proc/uid stat/[uid], network protocols like /proc/net/arp or /proc

/net/wireless and even some Android OS APIs. b) Public (rest-of-the-

world accessible) resources are different across different devices. Some of this

information is leaked by third party drivers like the LCD backlit status which

is mounted in different places in the /sys file system on different phones. c)

Traffic usage is also application related. For the round up and round down

defense strategy to be applied successfully, the OS must be provided with

the traffic patterns of the apps it has to protect before calculating an ap-

propriate round size capable of both securing them from malicious apps and

introducing sufficiently small noise to the data legitimate traffic monitoring

apps collect. A more systematic study is needed here to better understand

the problem.

5.2 DABINDER: Thwarting the DMB Threat

Our security analysis of existing Android Bluetooth devices 4 shows that

most of them are completely unprotected from mis-bonding (or DMB) at-

tacks. Although theoretically each device manufacturer can provide its own

app-device authentication to address the problem, this requires upgrading

not only its software (the app) and also the hardware (the external device),

thus making the device more expensive. Also, this case-by-case fix renders

the quality of security protection for different external devices hard to con-

trol. A better solution is to enhance Android to provide an OS-level access

control that bonds each external device to authorized app(s). This way, even

if a malicious app has the privilege to access the channel (BLUETOOTH

and BLUETOOTH ADMIN permission), it won’t be able to compromise the

confidentiality of the data being communicated between an external device

bonded with a legitimate app. In this section, we elaborate our design and

86

implementation of such a technique, called Dabinder, and evaluation of its

efficacy. Dabinder assumes that the underlying Android OS is not compro-

mised. The protection mechanism (namely Dabinder is developed on the

framework layer of Android OS.

5.2.1 Overview

We built Dabinder to effectively control app-device bonding in both pair-

ing and communication stages and to minimize user involvements in setting

access-control policies. Here we describe a high-level design that achieves

these two goals.

Figure 5.2 illustrates the architecture for Bluetooth socket communication

on Android 4.2, which includes Dabinder components (Reference Monitor

and Binding Policy database). To pair a device programmatically, the system

calls setPairingConfirmation and setPin or setPassKey of Bluetooth

Device. To unpair a device, the app uses the API removeBond. Alternatively,

it can invoke the settings program to control the Bluetooth adapter. In both

cases, an IPC request needs to be sent to AdapterService to control the

Bluetooth device. Once a bond (pairing) is established, the app can make a

socket connection to access the device. To this end, again it first needs to

talk to the BluetoothAdapater, to get a list of paired devices. From this

list, the app identifies the target device (MAC) and further requests a socket

through the object BluetoothDevice. This request is also delivered using an

IPC, through the IBluetooth interface, to AdapterService, which creates

the socket for the connection.

In our design, the whole security mechanism is built into the Adapter

Service, including a component that controls socket establishment (within

an authorized app-device pair1) and one that manages the unpairing oper-

ation (which can only be performed by an authorized app2). Such access

controls are based on a set of security policies that unambiguously bonds

a device to its authorized app, which are generated automatically by the

system from what is observed from the phone’s Bluetooth operations.

1App-device pair is our terminology for creating a bond between an app and Bluetooth
device as opposed to conventional Bluetooth pairing which creates a bond between the
phone and the device.

2Authorized app: The app that has already established bond to the device.

87

Figure 5.2: Bluetooth Subsystem and our defense mechanism: DaBinder is
built into AdapterService and checks the interaction between apps and
Bluetooth devices. It only allows authorized app to access Bluetooth device
and keeps bonding policy in a secure storage. Reference Monitor and
Bonding Policy blocks (both shown in light-blue) constitute Dabinder.

Now let’s see with an example, how exactly Dabinder operates: Once a

the Bluetooth device is activated, it is paired with its authorized app by the

phone user. This pairing operation is observed by Dabinder, which then gen-

erates a bonding policy that associates each device (name, MAC and UUID)

to its official app (that is, its Linux user ID or UID). Whenever Android

receives a Bluetooth socket-connection request from an app, the policy en-

forcement mechanism checks whether the app is associated in the bonding

policy to the device it is trying to talk to: if the app is not on the device’s

bonding policy, the request is denied; otherwise, it is allowed to proceed. In

this way, our mechanism defeats the data-stealing attacks (see 4.1.2). Also,

Dabinder runs an unpairing controller to manage the operations to dissolve

a pairing relation between the phone and a device: in the absence of the

bonding policy between the device and the app that requests such an oper-

ation, the app is considered to be unauthorized and its unpairing attempt is

stopped. As the data-injection attack 4.1.3 is contingent on resetting the link

key for the phone-device communication, it cannot work without unpairing

the phone from the original device. Therefore, such an attack cannot go

through.

88

5.2.2 Design and Implementation

Here we present the detailed design of Dabinder, which we implemented in

our research on a Galaxy NEXUS 4 phone with Android 4.2. As described

before, our design includes mechanisms for generating and maintaining se-

curity policies, and for enforcing these policies during phone-device pairing

and app-device connection establishment. All these mechanisms were imple-

mented within Adapter Service.

Critical to Dabinder’s mission is the security policies on the legitimate bond

between an app and an external device. Such a policy can certainly be manu-

ally specified, but it is highly desired that it can also be automatically gener-

ated, without the user’s intervention if she prefers to do so. In our design, this

policy-identification operation is performed within AdapterService, when

our policy enforcement mechanism inspects a pairing request and its follow-

up connection request: if an app is the first one to make a socket connection

to the device after the device is paired with the phone, our mechanism auto-

matically adds this app-device relation to a policy database as a new bonding

policy.

To securely and persistently maintain these policies in the system, Adapter

Service keeps a Bluetooth MAC Address and UID mapping in the Settings.

Secure key-value storage, which is persistent and read-only to the apps, and

can only be modified by the phone user or a system program. The user

can manage these policies from BluetoothManagerService through a user

interface built upon two functions exposed by AdapterService, addDevApp

and removeAppDev. In particular, she can explicitly declare an exemption

policy for a device, thus allowing it to be accessed by any app.

Furthermore, to communicate with an external device, an app needs to

establish a connection with it through a Bluetooth socket. Such a socket

is created by the system, through a call to the BluetoothDevice APIs:

createRfcommSocket, createRfcommSocketToServiceRecord, createInse

cureRfcommSocket or createInsecureRfcommSocketToServiceRecord. A

straightforward solution here is to instrument these APIs in order to control

the creation of Bluetooth sockets. The problem is that such mediation ac-

tually happens in the user land, inside individual apps’ address space. As

a result, there is no guarantee that it cannot be circumvented. Also, such

a policy compliance checking needs an additional IPC to AdapterService,

89

to get the policies from the system. Instead, in our research, we modified

AdapterService.connectSocket, a system function all these APIs have to

invoke, for policy compliance checking and enforcement. Whenever the func-

tion is called, it first searches the policy database for the device according

to its MAC address. If the device is found, our enforcement mechanism con-

tinues to look for its related bonding policies. In case, the app does not

appear on any of them (i.e. the device has been connected before and is not

exempted from the bonding protection), we consider that a policy violation

is detected and the request is denied. Otherwise, connectSocket returns a

socket and allocates the corresponding resources, such as file descriptors for

the connection.

This policy enforcement is implemented on the Android framework layer.

Apparently, the app including native code such as createBondNative and

removeBondNative may still touch the Bluetooth device on the Linux layer,

as illustrated in Figure 5.2. In our research, we inspected the Bluetooth

interface on Linux and found that it is actually included in the Linux group

bluetooth. For the app with BLUETOOTH ADMIN and BLUETOOTH permissions,

it can get into the groups net bt admin and net bt, but not bluetooth. As

a result, it will not be able to directly access the Linux Bluetooth resources,

even through its native code, due to the Linux access control. Under all

circumstances, the app needs IPC calls to transfer the execution to a system

process in order to use kernel resources. Therefore, we conclude that our

protection mechanism cannot be circumvented even by the native code.

Unpairing control. Despite policy identification, policy management and

connection control, Dabinder has to control the “unpair” operation too. In

the presence of secure Bluetooth communication, a malicious app needs to

first unpair the phone from the original device before pairing it with the clone

to reset the link key. To prevent this unauthorized unpairing, Dabinder in-

terposes on the function removeBond within AdapterService. Whenever an

unpairing request is received from the IBluetooth interface, our mechanism

checks it against the bonding policy retrieved from the policy dataset: if

the app that sends the request is not the authorized one on the policy, this

request is denied. Alternatively, we can pop up an interface on the phone to

alert the user to the unpairing request and allow the operation to proceed

with her permission.

90

A problem here is that some devices do not use secure Bluetooth commu-

nication, which enables the spoofed device to talk to the official app even

without knowing the link key. Fortunately, our measurement study shows

that most of devices collecting sensitive user data do support encrypted com-

munication (Section 4.1.4), though some of them can also automatically

switch to the insecure one when the secure connection fails. To address

this issue, Dabinder provides an optional policy through which the phone

user can require that any communication with a certain device must be en-

crypted. In case, the policy is violated (that is, a device is switching to

the insecure communication), we can choose to stop the communication and

alert the user for further instructions. This happens in AdapterService,

within the method connectSocket which checks whether SEC FLAG AUTH and

SEC FLAG ENCRYPT on flag are set.

5.2.3 Evaluation

We evaluated our implementation to understand its effectiveness in protect-

ing the communication with external devices and its performance impacts on

the phone’s normal operations. All the experiments were conducted on the

Galaxy Nexus phone with a Dual-core 1.2 GHz Cortex-A9 and 1GB memory,

Android 4.2 operating system and BlueDroid stack.

To understand the effectiveness of our approach, we ran it against all

the data-injection and data-stealing attacks discussed in Section 4.1. All

these attack attempts were thwarted. Specifically, for all the data-stealing

attacks, Dabinder stopped the malicious app from making socket connections

to the target device, as these connections violated the policy it automatically

detected during the pairing stage of the phone. When it comes to the data-

injection attacks, our implementation blocked all the attempts to unpair the

phone from the devices and therefore defeated the attacks when the secure

communication was in use. Also, our approach denied the establishment of

a socket for insecure connection required by the Pulse Oximeter app.

We further evaluated the performance of Dabinder, comparing the execu-

tion times for establishing sockets and unpairing a device with and without

its policy inspection and enforcement. Specifically, we measured the perfor-

mance of a set of functions using the code instrumented before and after their

91

Table 5.1: Dabinder performance evaluation. (mean / sd)

Functions Original Dabinder Delays
BluetoothSocket 0.0317 /

0.0059 ms
0.0353 /
0.0153 ms

0.0036 ms

connectSocket 63.1670 /
14.7098 ms

86.5152 /
14.2201 ms

23.3482 ms

removeBond 0.5319 /
0.1863 ms

0.5493 /
0.1822 ms

0.017ms

executions. The results are illustrated in Table 5.1.

Here, BluetoothSocket creates a Bluetooth socket, connectSocket builds

a socket connection and removeBond unpairs the phone from a device. As

we can see from the table, for all these functions, the delay is mainly caused

by connectSocket, about 23ms on average. It should be noted that only

8 devices can have Bluetooth connection simultaneously to a smartphone.

Moreover, a phone cannot have more than 30 RFCOMM sockets active at

the same time, as RFCOMM have only 30 channels [65]. For external devices,

they typically can accommodate only one or two connections. Actually, all

data from the device is downloaded through a single Bluetooth connection.

Therefore, this 23ms delay will not bring in any noticeable inconvenience to

the phone user.

Dabinder is a solution tailored to the Bluetooth channel. As Android

allows apps to utilize information from other external resources, such as NFC,

Audio, SMS and Internet, solutions are needed to warrant the utility of those

apps while preserving the confidentiality of the data being communicated

through thsoe channels. Next we discuss such a system, which uniformly

addresses this challenge for all the known channels of communication with

external resources.

5.3 SEACAT: DAC and MAC on External Resources

Our studies on Bluetooth, SMS, Audio and NFC 4, and prior findings on

Internet [22] emphasize the urgent need to enhance Android access control

92

to protect external resources. In this section, we present the first uniform

design for this purpose. This system, called SEACAT (Security-Enhanced

Android Channel Control), extends SEAndroid’s MAC 2.2.3 to cover SMS,

NFC, Bluetooth and Internet, and also adds in a DAC module to allow the

user and app developers to specify rules for all these channels, in addition

with Audio. We implemented SEACAT on Android 4.4 with an SEAndroid

enhanced kernel 3.4.0.

5.3.1 Design Overview

Our objective is to develop a simple security mechanism that supports flexi-

ble, fine-grained mandatory and discretionary protection of various external

resources through controlling their channels of communication. However,

achieving this goal is by no means a smooth sail. Here are a few technical

challenges that need to be overcome in our design and implementation.

• Limitations of SEAndroid. Today’s SEAndroid does not model exter-

nal resources. Even after it is extended to describe them, new enforce-

ment hooks need to be added to system functions scattered across the

framework/library layer and the Linux kernel. For example, the Blue-

tooth channel on Android 4.4 (Bluedroid stack) is better protected on

the framework layer, which has more semantic information, while the

control on the Internet should still happen within the kernel. Support-

ing these hooks requires a well though-out design that organizes them

cross-layer under a unified policy engine and management mechanism

for both MAC and DAC.

• Complexity in integration. Current Android already has the permission-

based DAC and SEAndroid-based MAC 2.2. An additional layer of

DAC protection for external resources could complicate the system and

affect its performance3. How to integrate SEACAT into the current

Android in the most efficient way is challenging.

To address these challenges, we have come up with a design that integrates

policy compliance checks from both the framework and the kernel layer, and

3Note that this new DAC cannot be easily integrated into the permission mech-
anism, since the objects there (different Bluetooth devices, web services, etc.) can
be added into the system during runtime.

93

enforces MAC and DAC policies within the same security hooks (Figure 5.3).

More specifically, the architecture of SEACAT includes a policy module, a

policy enforcement mechanism and a DAC policy management service. At

the center of the design is the policy module, which stores security policies

and provides an efficient compliance-check service to both the framework

and the kernel layers. It maintains two policy bases, one for MAC and

the other for DAC. The MAC base is static, which has been compiled into

the Linux kernel in the current SEAndroid implementation on AOSP. The

DAC base can be dynamically updated during the system’s runtime. Both

of them are operated by a policy engine that performs compliance checks.

The engine is further supported by two Access Vector Caches (AVCs), one

for the kernel and the other for the framework layer. Each AVC caches the

policies recently enforced using a hash map. Due to the locality of policy

queries, this approach can improve the performance of compliance checks.

Since DAC policies are in the same format as MAC rules, they are all served

by the same AVC and policy engine.

The enforcement mechanism comprises a set of security hooks and two

pairs of mapping tables. These hooks are placed within the system functions

responsible for the operations on different channels over the framework layer

and the kernel layer. Whenever a call is made to such a function, its hook first

looks for the security contexts of the caller (i.e., app) and the object (e.g., a

Bluetooth address, the Sender ID for a text message) by searching a MAC

mapping table first and then a DAC table. The contexts retrieved thereby,

together with the operation being performed, are used to query the AVC

and the policy engine. Based upon the outcome, the hook decides whether

to let the call go through. Just like the AVC, each mapping table has two

copies, one for the framework layer and the other for the kernel. Also, the

MAC table is made read-only while the DAC table can be updated during

runtime.

Both the DAC policy base and DAC mapping table are maintained by the

policy management service, which provides the user an interface to identify

important external resources (from their addresses, IDs, etc.) and the apps

allowed to access them. Also it can check manifest files of newly installed apps

to extract rules embedded there by the developer (e.g., only the official Chase

app can get the text message from Chase) to ask for the user’s approval.

Those policies and the security contexts of the labeled resources are uploaded

94

to the DAC base and the mapping tables respectively.

Figure 5.3: SEACAT architecture

Adversary Model

Like SEAndroid, the security guarantee of SEACAT depends on the integrity

of the kernel. We have to assume that the adversary has not compromised

the kernel to make the approach work. In the meantime, SEACAT can

tolerate corrupted system apps, as long as they are confined by SEAndroid.

Furthermore, the DAC mechanism is configured by the user and therefore

could become vulnerable. However, our design makes sure that even when

it is misconfigured, the adversary still cannot bypass the MAC protection in

place. Finally, we assume the presence of malicious apps on the user’s device,

with proper permissions to access all aforementioned channels.

5.3.2 Policy Specification and Management

To control external resources, we first need to specify the right policies and

identify the subjects (i.e., apps) and objects (e.g., Bluetooth glucose meter,

95

the Chase bank, etc.) to apply them. This is done within the policy module

and our policy management service.

SEACAT has to provide a convenient way of specifying policies. Remember

from the Background Chapter (Section 2.2.3), an SEAndroid rule determines

which domain is allowed to access which resources, and how this access should

happen. To specify such a rule for external resources, both relevant domains

(for apps) and types (for external resources) need to be defined. The domain

part has already been taken care of by SEAndroid: we can directly declare

ones for any new apps whose access rights, with regard to external resources,

need to be clarified. When it comes to types, those within the AOSP Android

have been marked as file type, node type (for sockets and further used to

specify IP range), dev type, etc. In our research, we further specified new

categories of types (or attributes), including BT type for MAC addresses of

Bluetooth devices, NFC type for NFC serial numbers and SMS type for SMS

Sender ID (originating addresses). Here is an example policy based upon

these domains and types:

allow trusted app bt dev:btacc rw perms

where bt dev is a type for Bluetooth devices (identified by their MAC ad-

dresses) and btacc includes all the operations that can be performed on the

type. This policy allows the apps in the domain trusted app to read from

and write to the MAC addresses in the type bt dev. Later we describe how

to associate such a domain with authorized apps, and the type with external

resources.

The DAC policies used in SEACAT are specified in the same way, using

the same format, which enables them to be processed by the policy engine

and AVC also serving MAC policies. The DAC policy base, includes a set

of types defined for the Audio channel. Audio has not been included in the

MAC policies since the device attached to it cannot be uniquely identified: all

we know is just whether the device is an input (headset) or output (speaker)

device or the one with both capabilities. For user-defined DAC policies,

we provide a mechanism to lock the whole audio channel when necessary, a

process elaborated later. Moreover, although the DAC base is supposed to be

updated at runtime, to avoid the overheads that come with such updates, we

predefined a set of “template” policies that connect a set of domains to a set

96

of types in different categories (Bluetooth, NFC, SMS, Internet and Audio)

with read and write permissions. The domains and types of those policies are

dynamically attached to the apps and resources specified by the user during

runtime. In this way, SEACAT only needs to maintain a mapping table

from resources to their security contexts (user seres contexts) before the

template rules run out.

Next, SEACAT must provide a mechanism for assigning domains to apps.

For the domains defined for MAC, how they are assigned to apps can also

be specified in the policies. Our implementation allows the administrator to

grant trusted apps, permissions to use restrictive external resources. Such

apps are identified from the parties who sign them. Specifically, when an

app is being installed, SEAndroid assigns it an seinfo tag according to its

signature. The mapping between this tag and the app’s domain is maintained

in the file seapp contexts, which Zygote (see Section 2.1), the Android

core process that spawns other processes, reads when determining the app’s

security context during its runtime.

Labeling apps for DAC is handled by SEACAT’s policy management ser-

vice, which includes a set of hooks within the PackageManager and installd.

Before an app is installed, these hooks present to the user a “dialogue box”,

alongside the app’s permission information. This allows the user to indicate

whether the app should be given a domain associated with certain channels

(Bluetooth, NFC, SMS, Internet and Audio), so that it can later be given

the privilege to access protected external resources. For an app assigned a

domain, the PackageManager labels it with an seinfo tag different from the

default one (for untrusted, unprivileged apps) and stores the tag alongside its

related domain within a dynamic mapping file user seapp contexts. Note

that this action will only be taken, in the absence of a MAC rule already

dictating the domain assignment for this app.

We further modified libselinux, which is used by Zygote, to assign the

appropriate security context to the process forked for an app. Our instru-

mentation within libselinux enables loading user seapp contexts for re-

trieving the security context associated with a user-defined policy. Note that

again, when an seinfo tag is found within both seapp contexts and

user seapp contexts, its context is always determined by the former, as

the MAC policies always take precedence. In fact the system will never cre-

ate a DAC policy for an external resource that conflicts with a MAC policy.

97

Nevertheless, if a compromised system app manages to inject erroneous DAC

policies, they will never affect or overwrite MAC policies.

The design of SEACAT also allows the app developer to declare within

an app’s manifest the external resource the app needs exclusive access to.

With the user’s consent, the app will get a domain and the resource will

be assigned a type to protect their interactions through a DAC rule. This

approach makes declaration of DAC policies convenient: for example, the

official app of Chase can state that only itself and Android system apps are

allowed to receive the text messages from Chase; a screenshot app using an

ADB service can make the IP address of the local socket together with the

port number of the service off limit to other third-party apps.

Labelling apps is of course not enough. We need a way to label external

resources as well, or in SEAndroid terms, we need to assign types to those ob-

jects in par with the labelling of local resources by SEAndroid. For standard

local resources, such as files, SEAndroid includes policies that guide the OS

to find them and label them properly. For example, the administrator can

associate a directory path name with a type, so that every file stored under

the directory is assigned that type. The security context of each file (which

includes its type) is always kept within its extension, making it convenient to

retrieve the context during policy enforcement. When it comes to external

resources, however, we need to find a new way to label their identifiers and

store their tags. This is done in our research using a new MAC policy file

seres contexts, which links each resource (the MAC address for Bluetooth,

the serial number for NFC, the Sender ID for SMS and the IP/port pair of

a service) to its security context. The content of the file is pre-specified by

the system administrator and is maintained as read-only throughout the sys-

tem’s runtime. It is loaded into memory buffers within the framework layer

and the Linux kernel respectively, and utilized by the security hooks there

for policy compliance checks (Section 5.1.2).

Labeling external resources for the DAC policies is much more complicated,

as new resources come and go, and the user should be able to dynamically

enable protection on them during the system’s runtime. SEACAT provides

three mechanisms for this purpose: 1) connection-time labeling, 2) app decla-

ration and 3) manual setting. Specifically, connection-time labeling happens

the first time an external resource is discovered by the OS, for example, when

a new Bluetooth device is paired with the phone. Also, as discussed before,

98

an app can define the external resource that should not be exposed to the

public (e.g., only system apps and the official Facebook app can get mes-

sages from the Sender ID “FACEBOOK”). Finally, the user is always able to

manually enter new DAC policies or edit existing ones through an interface

provided by the system.

For different channels, some labeling mechanisms work better than others.

Bluetooth and NFC resources are marked mainly when they are connected

to the phone: whenever there are apps assigned domains but not associated

with any Bluetooth or NFC resources, SEACAT notifies the user once a new

Bluetooth device is paired with the phone or an NFC device is detected; if

such a new device has not been protected by the MAC policies, the user

is asked to select, through an interface, all apps (those assigned domains)

that should be allowed to access it (while other third-party apps’ access

requests should be denied). After this is done, a DAC rule is in place to

mediate the use of the device. Note that once all such apps have been linked

to external resources, SEACAT will no longer interrupt the user for device

labeling, though she can still use the policy manager to manually add or

modify security rules.

In our implementation, we modified a few system apps and services to

accommodate this mechanism. For Bluetooth, we changed Settings, the

Bluetooth system app and the Bluetooth service. When the Settings app

helps the user connect to a newly discovered Bluetooth device, it checks the

device’s MAC address against a list of mandatory rules. If the address is

not on the list, the Bluetooth service pops an interface to let the user choose

from the existing apps assigned domains but not paired with any resources.

This is done through extending the RemoteDevices class. The MAC address

labeled is kept in the file user seres contexts, together with its security

context. This file is uploaded into memory buffers (for both the kernel and

the framework layer) for compliance checks. For NFC, whenever a new de-

vice is found, Android sends an Intent to the app that registers with the

channel. In our implementation, we instrumented the NFC Intent dispatcher

to let the user label the device and specify the apps allowed to use it when

the dispatcher is working on such an Intent. This is important when the

NFC device is security critical, as now the control is taken away from the

potentially untrusted apps and delegated to the user (if no MAC mechanism

is in place) during runtime. Furthermore, by providing this mechanism, the

99

system can protect itself, and it is deprived of any dependency on end-to-end

authentication between apps and external devices. Lastly, by utilizing the as-

sociation of apps with resources specified in MAC and DAC policies, the user

can read already labeled tags directly, avoiding going through the app selec-

tion mechanism every time, which immensely improves the usability of the

reading-an-NFC-device task. Again, the result of the DAC labeling is kept in

user seres contexts. The syntax of the MAC policy file seres contexts

and the DAC policy file user seres contexts is demonstrated below:

resource id=xx:xx:xx:xx:xx:xx channel=BLUETOOTH type=bt dev2

resource id=XXXXXXXX channel=NFC type=nfc dev1

resource id=24273 channel=SMS type=sms dev3

resource id=AUDIO channel=AUDIO type=audio dev

External resources associated with SMS and Internet are more convenient

to label through app declaration and manual setting. As discussed before, an

app can request exclusive access to the text messages from a certain SMS ID.

The user can also identify within the interface of our policy manager a set

of SMS IDs (“GOOGLE”, 32665 for “FACEBOOK”, 24273 for Chase, etc.)

to make sure that only com.android.sms can get their messages4. Use of

Internet resources should be specified by the app. For example, those using

ADB-level services [22] can state the local IP address and their services’ port

numbers to let our system label them.

Pertaining Audio, we label the whole channel at the right moment. Specifi-

cally, the DAC rule for the channel is expected to come with the app requiring

it or set manually by the user through the policy manager. Whenever the

system observes the Audio jack is connected to a device that fits the profile

(input, output or mixed), SEACAT just pops up a “dialogue box” asking

the user whether the device needs protection, if a DAC rule has already been

required by either an app or the user. We can avoid this window popup when

the app (the one expected to have exclusive access to the Audio channel) is

found to run in the foreground. In either case, the whole Audio channel is

labeled with a type, which can only be utilized by that app, system apps and

services. This information is again stored in user seres contexts for policy

4The SMS IDs for services are public. It is easy to provide a list of well-known
financial, social-networking services to let the user choose from.

100

enforcement. Notably, as soon as the device is detached from the Audio jack,

the type is dropped from the file, which releases the entire channel for other

third-party apps. To completely remove the pop-ups, the user can set the

system to an “auto” mode in which the Audio is only labeled (automatically)

when the authorized app is running. In this case, the user needs to follow

a procedure to first start the app and then plug in the device to avoid any

information leak.

5.3.3 Policy Compliance Check and Enforcement

To perform a compliance check, a hook needs to obtain the security contexts

of the subject (the app), the object (MAC address, NFC serial number, etc.)

and the operation to be performed (e.g., read, write, etc.) to construct a

query for the policy engine (see Figure 5.4). Here the subject’s context can be

easily found out: on the framework layer, this is done through the SEAndroid

function getPidContext, which utilizes the PID of a process to return its

context information. Although the same approach also works within the

Linux kernel, a shortcut is used in controlling Internet connections through

sockets. Specifically, within the socket’s structure, SEAndroid already adds

a field sk security to keep the security context of the process creating the

socket. The field is used by the existing hooks to mediate the access to

IP/port types. In our research, we put the enforcement of DAC policies

there, which involves finding the security contexts of an IP-port pair from a

DAC table within the kernel.

The object’s context is kept within the MAC policy file seres contexts

and the DAC policy file user seres contexts. To avoid frequently reading

from those files during the system’s runtime, SEACAT uploads their content

to a pair of buffers in the memory both in the framework layer and the kernel.

These buffers are organized as hash maps, serving as the mapping tables to

help a security hook retrieve objects’ security contexts. Specifically, we im-

plemented a function for searching the mapping tables within libselinux,

and exposed this interface to the framework so that the security hooks can

access it through Java or native code. Within the kernel, we built another

mapping table for the DAC policy5. This table is synchronized automatically

5Note that we did not build the table for MAC here, since SELinux already has

101

with the one for the framework layer to make sure that the same set of DAC

policies are enforced on both layers. The set of operations we created for ma-

nipulation and retrieval of information from the memory buffers and exposed

through libselinux to the rest of the system, are listed within Table 5.2.

Table 5.2: SEACAT API

FUNCTION DESCRIPTION
loadPDPolicy Loads the MAC (seres res contexts) and

DAC (user seres contexts) policy bases con-
taining the resource with security context
associations, into the SEACAT memory
buffers.

getResourceSecContext Performs a lookup in the SEACAT memory
buffers for a security type assigned to a re-
source.

getResourceChannel Performs a lookup in the SEACAT memory
buffers for the channel that a resource be-
longs to.

isResourceMAC Returns 1 if the resource is present in SEA-
CAT memory buffers and was loaded from
the MAC policy base, 0 if it was loaded from
the DAC policy base, or NULL otherwise.

insertDACRes Stores the security context of a resource in
the appropriate memory buffer and the cor-
responding policy base.

getDomain Returns the security context assigned to a
third-party app.

Given the security contexts for a subject (the app) and an object (e.g.,

an SMS ID), a security hook is ready to query the AVC and policy engine

to find out whether an operation (i.e., system call) is allowed to proceed.

On the framework layer, this policy compliance check can be done through

selinux check access. In our research, we wrapped this SEAndroid func-

tion, adding program logic for retrieving an object’s security context from the

mapping table. The new function seacat check access takes as its input

a resource’s identifier (Bluetooth MAC, SMS ID, etc.), the caller’s security

context and the action to be performed, and further identifies the resource’s

security context before running the AVC and the policy engine on those pa-

a table for enforcing MAC policies on IPs. Also, all other channels are enforced
on the framework layer.

102

rameters. Note that for the resource appearing within both MAC and DAC

tables, its security context is only determined by the MAC policy. Also, the

resource not within either table is considered to be public and can be accessed

by any app. Again, this new function is made available to both Java and

native code. The same mechanism was also implemented within the kernel,

through wrapping the compliance check function avc has perm. The AVC

and the policy engine are largely intact here, as our system was carefully

designed to make sure that the DAC rules are in the same format as their

MAC counterparts and therefore can be directly processed by SEAndroid.

To be able to enforce these policies we had to interject the security hooks

in the appropriate functions of the framework or the kernel. This instrumen-

tation allows us to perform our policy compliance checks before a requesting

app accesses the information we want to safeguard. Since the external chan-

nels we are considering consist of Bluetooth, NFC, Internet, SMS and Audio,

SEACAT has to introduce the hooks at the appropriate place for each channel

such as to minimize both the risk that an adversary can bypass the protection

from a lower level in the software stack and its implementation complexity.

Figure 5.4: SEACAT Policy Compliance Check

To fully control the Bluetooth channel, all its functions need to be instru-

mented. A prominent example here is Bluetooth Socket.connect within

the Bluetooth service, which needs to be invoked for establishing a connec-

tion with an external device. In our implementation, we inserted a security

hook at the beginning of the function to mediate when it can be properly

executed. A problem is how to get the process ID (PID) of the caller pro-

cess for retrieving its security context through getPidContext. Certainly we

103

cannot use the PID of the party that directly invokes the function, which

is actually the Bluetooth service. What we did is to turn to Binder, which

proxies the inter-process call (IPC) from the real caller app. Specifically, our

hook calls getCallingPid (provided by Binder) to find out the app’s PID

and then its security context, and passes the information to the Bluetooth

stack. Inside the stack we instrumented the actual connection attempt, which

uses the app’s security context, the Bluetooth MAC address to be connected

and the “open” operation as inputs to query seacat check access. What

is returned by the function causes the connection attempt to either proceed

or immediately stop. The Bluetooth service is notified accordingly regarding

the success or failure of the connection attempt. In the same manner, we can

instrument other functions in the Bluetooth stack.

What about NFC? For the broadcomm chip on Google Nexus 4 devices,

the NFC stack has been implemented on the framework/library layer through

libnfc-nci. As a result, all our security hooks are placed on this layer,

within major NFC functions readNdef,

writeNdef and connect, for mediating a caller process’s operations on an

NFC device with a particular serial number (which is treated as the device’s

identifier). A tricky part is that when a new NFC device is found to be in

proximity, NFC runs a dispatcher to identify which apps have registered for

that device through Intent-filters. The dispatcher will deliver an Intent

exposing the content of the device to such an app. In cases where multiple

apps request access to that NFC device, an “Activity Chooser” box will be

presented to the user so she can choose which activity should be launched.

Unequivocally, this operation will cause information leaks if the target app

is malicious and therefore needs to be controlled. In our research, we in-

strumented the dispatcher to execute the MAC and DAC policy compliance

check against all such registered apps with regards to a specific device serial

number. For those that fail the check, the dispatcher simply ignores them

and therefore the Intent with the NFC device’s contents will never reach

them.

The Internet channel differs from both Bluetooth and NFC. Internet has

been controlled inside the kernel, with security hooks placed within the func-

tions for different socket operations. As discussed before, SEAndroid has

already hooked those functions for enforcing mandatory policies on IP ad-

dresses, port numbers and others. In our research, we extended those ex-

104

isting hooks to add enforcement mechanisms for DAC policies. Specifically,

we changed selinux inet sys rcv skb and selinux sock rcv skb compat

to enable those wrapper functions to search the DAC mapping table within

the kernel for the security contexts of IP-port pairs specified by the user

and use such information to call avc has perm. Note that this enforcement

happens to the objects (IP and port numbers) that have already passed the

MAC compliance check: that is, those IP and port numbers are considered

to be public by the administrator, while the user can still add her additional

constraints on which party should be allowed to access them.

The SMS channel turns out to be more intricate. Whenever the Telephony

service on the phone receives a text message from the radio layer, Inbound-

SmsHandler put it in an Intent, and then calls SMSDispatcher to broad-

casts it to all the apps that register with the event (SMS RECEIVED ACTION or

SMS DELIVER ACTION). Also the InboundSmsHandler stores the message to

the content provider of SMS. Such a message is limited to the text content

with up to 160 characters. To overcome this constraint, the message deliv-

ered today mainly goes through Multimedia Messaging Service (MMS), which

supports larger message length and non-text content such as pictures. What

really happens when sending such a message (which can include multimedia

content) is that a simple text message is first constructed and transmitted

through SMS to the MMS on the phone, which provides a URI for down-

loading the actual message. Then, MMS broadcasts the message through the

Intent to recipients and also saves the message locally through its content

provider.

To mediate this complicated channel, we instrumented both SMS and

MMS to track the entire work flow and enforce MAC and DAC policies right

before a message being handed over to apps (Figure 5.5 in Appendix). Specif-

ically, we hooked the function processMessagePart within SMSDispatcher

to get the ID of the message sender (i.e., the originating address) through

SmsMessageBase.getOriginatingAddress(). This sender ID serves as an

input for searching the mapping tables. The security context identified this

way is then attached to the Intent delivered to MMS as an extra attribute

SEC CON. On the MMS front, a security hook inspects the attribute and fur-

ther propagates the security context to another attribute within a new Intent

used to transmit the real message once it is downloaded. We also modified the

function deliverToRegisteredReceiverLocked within BroadcastQueue to

105

 RIL
Receive Send

SMSDispatcher content://sms
content://mms

BroadcastQueue

App

S
E
A
C
A
T

SEC_CON
type

SEACAT_CHECK_ACCESS

Intent

filtered cursor

Figure 5.5: SEACAT ’s enforcement on SMS: SEACAT labels each sms
message intent and checks if an app can access the message before
delivering the intent to the app. Also SEACAT filters the sms content
provider query results according to the security context of the app

obtain the security context of each app recipient involved in the broadcast

and runs seacat check access to check whether the app should be allowed

to get the message before adding the message to its process message queue.

Besides getting SMS message from Intent receiver for SMS RECEIVED ACTION

or SMS DELIVER ACTION6, an app can also directly read from the SMS or MMS

content provider given the SMS READ permission. To mediate such accesses,

we further instrumented the content provider of SMSProvider and MMSPro-

vider to perform the policy compliance check whenever an app attempts to

read from its database: based on the app’s security context and each mes-

sage’s address, our hooks sanitize the cursor returned to the app, removing

the message it is not allowed to read.

Like SMS, the Audio channel is also mediated on the framework layer.

Whenever a device is connected to the Audio jack, WiredAccessory Manager

detects the device and calls setDeviceStateLocked. Within the function,

we placed a hook that identifies the type of the device (input/output

/mixed) and checks the presence of a policy that controls the access to such a

device. If so, it directly calls the SEACAT function SensChannel.assignType

to assign the object type in the policy to the Audio channel (which prevents

6On Android 4.4, only the default sms app gets this Intent

106

the channel from being used by unauthorized third-party apps) when an au-

thorized app is running in the foreground. Otherwise, it pops up a “dialogue

box” to let the user decide whether the device is the object within the policy

and therefore needs to be protected. In either case, as soon as the device

is unplugged from the Audio jack, the hook immediately removes from the

DAC mapping table the entry for the Audio channel, thereby releasing it to

other third-party apps.

Policy enforcement happens within the functions for collecting data from

the Audio channel. Particularly, SEACAT has a hook inside the start

Recording method of android.media.AudioRecord. Once the method is

invoked, it looks for the security contexts for the calling process (through

getContext) and the Audio channel (using getResourceSecContext) to

check polices and determine whether the call can go through.

5.3.4 Evaluation

In our research, we evaluated the effectiveness of SEACAT against all existing

threats to Android external resources and measured the performance over-

head it introduces. Our study was performed on a pair of Nexus 4 phones with

Android 4.4 (android-4.4 r12), kernel KRT16S, with the 3.4 kernel (android-

msmmako3.4kitkatmr0): one installed with an unmodified OS to serve as a

baseline, and the other with the SEACAT-enhanced kernel. Following we re-

port what we found. The video demos for this study can be found online [61].

Firstly we want to make sure that SEACAT actually solves the prob-

lem and can successfully safeguard all known external resources. Table 5.3

presents 5 known threats to external resources used in our research, which

include collection of data from iThermometer through Bluetooth misbonding

(see Section 4.1), unauthorized use of an ADB proxy based screenshot service

through local socket connections [22], as well as attacks on SMS (stealing text

messages from Chase and Facebook), Audio (gathering activity data from the

UP wristband) and NFC (reading sensitive information from NFC tags) 4.2.

In our study, we ran those attacks on the unprotected Nexus 4, which turned

out to be all successful: the malicious app acquired sensitive information

from the external resources through the channels (Bluetooth, SMS, Internet,

Audio and NFC), exactly as reported in prior research [22] and Sections 4.1

107

and 4.2.

Table 5.3: Threats to Android external resources

No KNOWN THREATS
1 Bluetooth misbonding attack
2 unauthorized adb-based screenshots
3 unauthorized read of an SMS message
4 unauthorized access to audio device
5 unauthorized read of an NFC device’s contents

All such attacks, however, stopped working on the SEACAT-enhanced

Nexus 4. Specifically, after assigning a type to the MAC address of the

iThermometer device through our policy management service, we found that

only the official app of iThermometer, which was assigned to an authorized

domain, was able to get data from the device [61]. The malicious app run-

ning in the untrusted app domain could no longer obtain body temperature

readings from the thermometer. For SMS, once we labeled the Sender IDs

of Chase and Facebook with a type that can only be accessed by the apps

within the system domain, the third-party app could not find out when mes-

sages from those services came, nor was it able to read them from the SMS

content provider content://sms. On the other hand, the user could still see

the messages from com.android.sms [61]. Similarly, the screenshot attack

reported in prior research [22] was completely thwarted when the local IP

address and port number was labeled. Also the security type given to the

serial number of an NFC tag successfully prevented the malicious app from

reading its content. In the presence of both authorized and unauthorized

apps, the protected Nexus directly ran the authorized app, without even

asking the user to make a choice, as the unprotected one did. For Audio,

after the user identified the presence of the Jawbone wristband or the official

app of the device was triggered, the channel could not be accessed by the

malicious app. It was released only after the wristband was unplugged from

the Audio jack.

The effectiveness of our protection was evaluated under both MAC and

DAC policies for all those attack cases, except the one on the Audio channel,

which we only implemented the DAC protection (Section 5.3.2). Also, we

tried to assign a resource specified by a MAC policy to a DAC type using

our policy manager and found that the attempt could not go through. Even

108

after we manually injected such a policy into our DAC database and mapping

table (which cannot happen in practice without compromising the policy

manager), all the security hooks ignored the conflicting policy and protected

the resources in accordance with the MAC rules.

After making sure SEACAT is efffective, we must study its overhead to de-

termine whether it can be practically deployed. To evaluate the performance

impact of SEACAT, we measured the execution time for the operations that

involve our instrumentations, and compared it with the delay observed from

the baseline (i.e., the unprotected Nexus 4). Table 5.4 shows examples of the

operations used in our research. In the experiments, we conducted 10 trials

for each operation to compute its average duration.

Table 5.4: A list of operations affected by SEACAT enhancements

No OPERATION
1 install app
2 Bluetooth pairing
3 BluetoothSocket.connect
4 dispatchTag
5 dispatchTag (foreground)
6 Ndef.writeNdefMessage
7 Audio device connection
8 AudioRecord.startRecording

Specifically, we recorded the installation time for a new app, which involves

assignment of domains. The time interval measured in our experiment is

that between the moment the PackageManager identifies the user’s “install”

click and when the BackupManagerService gets the Intent for the comple-

tion of installing an app with 3.06 MB. For Bluetooth, both the pairing

and connection operations were timed. Among them, the pairing operation

recorded starts from the moment it was triggered manually and ends when

the OnBondStateChanged callback was invoked by the OS. For connection, we

just looked at the execution time of BluetoothSocket.connect. Regarding

SMS, we measure the time from when a SMS message is received (process-

MessagePart) to when the message is delivered to all the interested receivers

and the process of querying the SMS content provider. The Internet-related

overhead was simply found out from the network connection time.

The amount of time it takes to dispatch an NFC message is related to the

status of the target app: when it was in the foreground, we measured the

109

interval between dispatchTag and the completion of the NfcRootActivity;

otherwise, our timer was stopped when setForegroundDispatch was called.

For the Audio channel, we recorded the time for the call AudioRecord.start

Recording to go through.

The results of this evaluation are presented in Table 5.5. As we can see from

the table, the delays introduced by SEACAT are mostly negligible. Specif-

ically, the overhead in the installation process caused by assigning domains

to an app was found to be as low as 49.52 ms. Policy enforcement within

different security hooks (with policy checks) happened almost instantly, with

a delay sometimes even indistinguishable from the baseline. In particular, in

the case of NFC, even when the unauthorized app with the NFC permission

was running in the foreground, our implementation almost instantly found

out its security context and denied its access request. The only operation that

brings in a relatively high overhead is labeling an external device. It involves

assigning a type to the resource, saving the label to user seres contexts,

updating the DAC mapping table accordingly and even changing the DAC

policy base to enable authorized apps’ access to the resource when necessary.

On average, those operations took 189.44 ms. Note that this is just a one-

time cost, as long as the user does not change the type given to a resource.

An exception is Audio, whose type is assigned whenever the dongle under

protection is attached to the Audio jack. Note that the user only experi-

ences this sub-second delay once per use of the accessory, which we believe

is completely tolerable.

All the results presented here do not include the delay caused by human in-

terventions: for example, the time the user takes to determine the domain of

an app and the type of a resource. Such a delay depends on human reaction

and therefore is hard to measure. Also they only bring in a one-time cost,

as subjects and objects only need to be labeled once. Actually, for NFC, our

implementation could even remove the need for human intervention during

policy enforcement: in the presence of two apps with the NFC permissions,

the user could be asked to choose one of them to handle an NFC event when-

ever it happens, while under SEACAT, this interaction is avoided if one of

the apps is within the domain authorized to access the related NFC device

and the other is not.

110

Table 5.5: Detailed Performance Measurements in milliseconds (ms)

AOSP (A) SEACAT (S) A-S
Operation mean stdev Operation mean stdev overhead

(ms)
install app 1415.6 40.61 install app (label) 1465.2 76.07 49.52
Bluetooth pairing 1136.5 351.65 Bluetooth pairing (la-

bel)
1434.4 237.60 279.9

BluetoothSocket.connect 1699.1 770.22 BluetoothSocket.connect 1616 306.83 -83.1
BluetoothSocket.connect
(block)

6 3 -1693.1

dispatchTag 87.3 4.32 dispatchTag
(MAC:allow)

96.9 4.63 9.6

dispatchTag
(MAC:block)

113.1 3.57 25.8

dispatchTag (la-
bel+allow)

358.28 40.47 270.98

dispatchTag (fore-
ground)

272 26.33 dispatchTag (allow
foreground)

269 41.53 -3

dispatchTag (deny fore-
ground)

132.5 21.76 -139.5

Ndef.writeNdefMessage
(app A)

197.1 6.17 Ndef. writeNdefMes-
sage
(DAC/MAC allow)

190.89 14.61 -6.21

Ndef.writeNdefMessage
(app B)

112.4 12.45 Ndef. writeNdefMes-
sage (unlabeled)

117.5 16.36 5.1

SMS process message 94 7.3 SMS process mes-
sage(allow)

106.5 8.11 12.5

SMS process message
(redirect)

154 12.11 60

SMS query() 2.7 1.1 SMS query() filter 6.39 2.4 3.69
Audio device connec-
tion

14.9 5.11 Audio device connec-
tion
(label+ connect)

177.6 21.92 162.7

AudioRecord.
startRecording (allow)

85.9 6.84 AudioRecord.
startRecording (allow)

95.6 16.75 9.7

AudioRecord.
startRecording (block)

7.2 3.58 -78.7

In this Chapter we have seen some mitigation strategies for attacks stem-

ming from local resources, a defense solution to tackle the unfettered use of

the Bluetooth channel and lastly we elaborated on a more uniform approach

taking advantage of the SELinux infrastructure incorporated to AOSP since

version 4.3, to protect all known channels of communication with external

Android resources. In the last Chapter 6 we will summarize our findings

and scrutinize over the ramifications and limitations of our defense strategies

in safeguarding Android’s local and external resources.

111

CHAPTER 6

CONCLUSION AND DISCUSSION

Since its advent in 2007, Android dominated the mobile world. Its open

source nature lead to its adoption by major hardware and telecommunication

companies offering an unprecedented experience to its users. Built on top of

Linux, it inherits a well studied and functional paradigm in terms of its utility

and security. Nevertheless, its model for supporting third-party apps to

offer creative and novel functionalities, generated both new requirements and

new challenges for its developers. Android seems to take security seriously

and it employs a number of security models, featuring Linux’s DAC access

control for local resources, its permission model and most recently SELinux

on Android for MAC access control. Nevertheless, as seen in Chapter 3 and

Chapter 4, a number of vulnerabilities exist that can compromise the system.

Such vulnerabilities can stem from its ineptitude to sufficiently protect its

local and external resources.

Firstly we saw (Section 3) how the gap between Linux design and the actual

smartphone use and the gap between assumptions on publicly available local

resources and evolving app design and functionality, entail grave user-privacy

leaks. Some local resources, while being publicly available to processes on a

stationary machine is of minimal privacy risk, the same resources result in

critical privacy violations when available to all users/apps on a mobile plat-

form. For example network usage statistics can be used to infer a user’s medi-

cal condition, her identity and financial preferences. In addition, information

regarding the MAC addresses of access points the smarpthone is connected

to, can leak a user’s location. Furthermore, Android’s rich API, employs

the permission model to control access to sensitive information. However,

there exist information that at a first look doesn’t seem privacy critical and

thus are not protected by a permission. Nonetheless, an adversary can use

such information to infer a user’s driving route. The attacks possible due to

unprotected local resources that we have seen, are mere examples of what

112

an adversary can do by leveraging access to seemingly innocuous resources.

These findings call into question the design assumptions made by Android

developers on public local resources and emphasize the demand for new tech-

niques to address such privacy risks. To this end we discussed solutions (see

5.1) focusing on protecting attacks based on divulged network traffic while

preserving the utility of the apps that legitimately need such information. In

particular we first restricted direct access to resources. This way an app can

only access the information given by the respective Linux files through the

framework’s API which an app can use only if the appropriate permission is

being granted by the user. By doing that, an app cannot hide the fact that is

accessing the resource in question. As a second step, we proposed that apps

can actually choose how its own network traffic will be made available to

other apps. For this we allowed a developer to choose between the following

4 policies:

• no access: no other app can access the network traffic generate by this

app.

• rounding: the length of bytes sent or received by the app is rounded

up or down to a multiple of a coefficient given by the developer.

• aggregation: the system reports accummulated data network traffic

information when a time interval expires.

• no protection (default policy): any app can access this app’s network

traffic as before.

Using the no access policy, highly sensitive web-based apps can dictate that

no one can read their generated network traffic. On one hand, a banking

app can ask the system to conceal all its traffic due to the critically private

data it uses. On the other hand, a gaming app can use the default policy, for

knowing what the user clicks during a game is of no real value to an adversary.

Rounding and aggregation can be used by privacy aware apps and in fact

is the recommended option. These two techniques, preserve the utility of

apps that provide the user with detailed network statistics allowing her to

better manage her data plan and apps, while at the same time, minimize the

risk of information leaks. In other words, they allow apps to get information

that can be utilized for general statistical traffic usage reporting, but not as

113

detailed as to allow inference attacks on what is actually being clicked on the

monitored app.

The limitation of this technique is that it relies on app developers to provide

these policies. Most of the developers are concerned with ease of development

and how rapidly they can get the product in the market and then about

user privacy. Therefore it becomes debatable whether they will actually use

such a mechanism. Nevertheless, highly privacy-critical applications such as

banking, business and healthcare apps are expected to utilize this solution

once available as potential privacy violations can acutely jeopardize their

business.

Secondly we studied the risk associated with Android’s channels of com-

munication with external resources. We contended that the Android permis-

sion model is too coarse-grained to safeguard these channels while preserving

the utility of the apps. To demonstrate that we elaborated on Device Mis-

Bonding Attacks (DMB) on Bluetooth and discussed similar confused deputy

attacks on the Internet, Audio, NFC and SMS channel. Consider for example

an app with the Bluetooth permission talking to a Bluetooth-powered blood

glucose meter. A diabetic user, will install the app and use the Bluetooth

device. However, any app with the appropriate Bluetooth permissions can

connect to the blood glucose meter and steal the user’s data. Furthermore, a

malicious entity can spoof the blood glucose meter and feed falsified data to

the legitimate app, an action that might lead to severe medical implications

for the user: erroneous data can compel her to use higher dosages of insulin

which can lead even to death. Also consider a user, installing the Chase app.

The app can send through SMS account balances to the user, or credit card

payments which surpass a defined limit. It can even send a PIN that can

be used to change the users’ password on her Chase account. Unfortunately

any app with the RECEIVE SMS and/or READ SMS permission can read

these SMSs.

To address this we first designed Dabinder, which can protect against

the Bluetooth data-stealing attacks. Dabinder allows the user to map a le-

gitimate application with a Bluetooth accessory. Once this association is

established, only the legitimate app can use the Bluetooth channel to com-

municate with the accessory. Moreover, Dabinder tackle on the Bluetooth

data-injection attacks is two-fold. In the case of encrypted communication,

it only allows a mapped application to remove the bond (the link/encryption

114

key) with the correct Bluetooth device. However, in the case of unencrypted

communication, the spoofed device trying to feed erroneous data to a legiti-

mate app does not need to reset the established encryption key and thus can

talk directly to the app. To address this, Dabinder allows the user to specify

which app-device communication must always be encrypted.

Dabinder has of course its limitations. For example, it is a solution tailored

specifically to Bluetooth and cannot protect other channels such as Internet,

NFC, SMS and Audio. In addition, it always relies on the user to map an ap-

plication with the appropriate device. Enterprises and accessory companies

cannot safeguard their devices directly and it is up to the user’s discretion

to deploy the security mechanism. We thus say that Dabinder is a DAC so-

lution for the Bluetooth channel. Furthermore, its design is somewhat rigid

as it does not provide any management capabilities. For example once a

user has made a decision about an app-device pairing this cannot change

even if she decides to use another app with that device or the company itself

develops a new app for its accessory. Also, its enforcement happens at the

framework layer and inside the Bluetooth service. Consequently, a malicious

app can directly use the Bluetooth stack (Broadcomm’s Bluedroid since 4.2)

to bypass the enforcement mechanism and communicate with the external

device. Lastly, Dabinder is effective, provided the user pairs the right app

with the right device. For example if she pairs the right app with a spoofed

device then it is subjected to data-injecting attacks. In fact she won’t be able

to use the right device with the phone after that, unless they find another

compatible app.

To address this need for a more general approach that can safeguard all

Android’s channels of communication with external resources, we designed

SEACAT. SEACAT protects Bluetooth, SMS, NFC, Audio and Internet com-

munications through a unified approach built on top of the implementation of

SELinux on Android (SEAndroid). SEACAT naturally extends SEAndroid

MAC control to cover these external channels, by providing the capability

to smartphone vendors and enterprise IT’s to restrict access to external re-

sources to only clearly defined apps through MAC policies. Furthermore,

SEACAT has a DAC component that allows a user to protect these chan-

nels when she deems it as appropriate. For example if she uses a personal

banking app that receives SMSs carrying private information, she can de-

fine through SEACAT’s DAC policy management that only the Chase app

115

can read those messages, despite the fact that other apps might have the

RECEIVE SMS and/or READ SMS permission. This is important as a lot

of not-so-trustworthy apps have valid reasons to request such permissions:

e.g., FunForMobile Ringtones & Chat (5,000,000+ downloads) needs the

READ SMS and SEND SMS permissions to allow users share jokes. How-

ever, this permission allows the app to read any SMS even if that comes

from Chase Bank service. With SEACAT, a user can still allow FunFor-

Mobile Ringtones & Chat to access SMSs but not the ones carrying private

information.

SEACAT has negligible performance overhead and strives to use the same

policy structure and syntax as SEAndroid. This allows its MAC policy con-

figuration to be not more complex than the current SEAndroid MAC con-

figuration. Moreover its DAC policies can be automatically configured by

answering simple questions such as Does this app come with an accessory?

and Please select the app you downloaded for this accessory., or by mapping

the ID FACEBOOK to the Facebook app.

But how does SEACAT compare with Dabinder? SEACAT is a more gen-

eral solution than Dabinder as it covers all known channels of communication

with external resources and can be readily expanded to cover new ones as they

appear in a highly dynamic and evolving system such as Android. Further-

more is more capable as it offers smarpthone vendors, accessory manufactures

and service providers the capability to configure MAC policies and users the

capability to manage their DAC policies. Even for Bluetooth, Dabinder’s so-

lution is on the framework layer while SEACAT enforcement happens directly

in the Bluetooth stack. Thus SEACAT offers higher security guarantees than

Dabinder.

In par with the other security solutions we explored, SEACAT has its own

limitations. In particular, it has a hard time protecting against spoofing (or

data-injecting) attacks. For secure channels, things are easier as the spoofed

device must know the encryption key shared between the OS and the external

source. In the Bluetooth case this protection can be subverted by a malicious

app removing this key (by calling removeBond()). This malicious act can be

thwarted by SEAndroid policies dictating that only system apps can execute

such task. However in the absence of such a key, the system will have troubles

defending itself. For example SEACAT recognizes external devices by their

IDs (MAC address for Bluetooth, Serial number for NFC, SMS ID for SMS,

116

IP/Domain name for Internet). A malicious entity can spoof such IDs and

attack the respective channel. Here an approach like Dabinder’s would

work for the Bluetooth channel. Specifically SEACAT DAC policies can be

defined to restrict certain app-device communications to a secure protocol.

For MAC defined app-resource pairs, SEACAT can automatically require the

use of a secure Bluetooth channel. This will create a link key between the

OS and the external Bluetooth device which can only be used by the right

app. Nevertheless, the system is still vulnerable from spoofing attacks on

other channels unless an encryption key is shared between the app and the

external resource.

With this discussion we reach the end of this thesis. By know you should

be convinced that Android might dominate the mobile market but it is by

no means a perfect system. In fact Android is continuously evolving and is

hard to predict how it is going to be leveraged by developers or utilized by

users. Nonetheless, as we use our smartphones to guide every facet of our

lives, our data privacy on mobiles becomes progressively significant. This

thesis epitomizes the fact that Android’s security model is still problematic

when it comes to protecting its local and external resources. Unprotected re-

sources result in severe privacy breaches. This generates the need to intensify

both the scientific community’s and industry’s efforts to buttress Android’s

security. As we saw here, doing that is not always trivial. Solutions exist or

can be designed that can protect against specific adversary models but they

have their limitations. Essentially, the goal is to strike a balance between de-

signing a solution with the strongest possible adversary model and designing

a practical solution that can be deployed in the real world. This is exactly

the approach we followed here.

117

REFERENCES

[1] “Wikipedia android version history,” http://en.wikipedia.org/wiki/
Android version history, accessed: 10/07/2014.

[2] “Antutu benchmark,” https://play.google.com/store/apps/details?id=
com.antutu.ABenchMark, 2013, accessed: 10/07/2014.

[3] L. Zhang, B. Tiwana, R. Dick, Z. Qian, Z. Mao, Z. Wang, and
L. Yang, “Accurate online power estimation and automatic battery
behavior based power model generation for smartphones,” in Hard-
ware/Software Codesign and System Synthesis (CODES+ISSS), 2010
IEEE/ACM/IFIP International Conference on, 2010, pp. 105–114.

[4] “Wikipedia android (operating system),” http://en.wikipedia.org/wiki/
Android %28operating system%29, accessed: 10/07/2014.

[5] “Android Developers Official Website activity,” http://
developer.android.com/reference/android/app/Activity.html, accessed:
10/07/2014.

[6] I. W. M. P. Tracker, “Apple Cedes Market Share in Smart-
phone Operating System Market as Android Surges and Win-
dows Phone Gains, According to IDC,” http://www.idc.com/
getdoc.jsp?containerId=prUS24257413, accessed: 10/07/2014.

[7] “Square up,” https://squareup.com/, accessed: 10/07/2014.

[8] M. Honorof, “79http://www.tomsguide.com/us/mobile-malware-
targets-android,news-17452.html, accessed: 10/07/2014.

[9] Y. Zhou and X. Jiang, “Dissecting android malware: Characterization
and evolution,” in Proceedings of the 2012 IEEE Symposium on
Security and Privacy, ser. SP ’12. Washington, DC, USA: IEEE
Computer Society, 2012. [Online]. Available: http://dx.doi.org/
10.1109/SP.2012.16 pp. 95–109.

[10] M. Dietz, S. Shekhar, Y. Pisetsky, A. Shu, and D. S. Wallach, “Quire:
Lightweight provenance for smart phone operating systems,” in 20th
USENIX Security Symposium, San Francisco, CA, Aug. 2011.

118

http://en.wikipedia.org/wiki/Android_version_history
http://en.wikipedia.org/wiki/Android_version_history
https://play.google.com/store/apps/details?id=com.antutu.ABenchMark
https://play.google.com/store/apps/details?id=com.antutu.ABenchMark
http://en.wikipedia.org/wiki/Android_%28operating_system%29
http://en.wikipedia.org/wiki/Android_%28operating_system%29
http://developer.android.com/reference/android/app/Activity.html
http://developer.android.com/reference/android/app/Activity.html
http://www.idc.com/getdoc.jsp?containerId=prUS24257413
http://www.idc.com/getdoc.jsp?containerId=prUS24257413
https://squareup.com/
http://www.tomsguide.com/us/mobile-malware-targets-android,news-17452.html
http://www.tomsguide.com/us/mobile-malware-targets-android,news-17452.html
http://dx.doi.org/10.1109/SP.2012.16
http://dx.doi.org/10.1109/SP.2012.16

[11] M. Grace, Y. Zhou, Z. Wang, and X. Jiang, “Systematic detection
of capability leaks in stock Android smartphones,” in Proceedings of
the 19th Network and Distributed System Security Symposium (NDSS),
Feb. 2012. [Online]. Available: http://www.csc.ncsu.edu/faculty/jiang/
pubs/NDSS12 WOODPECKER.pdf

[12] “Bodymedia link armband,” http://www.bodymedia.com/, accessed:
10/07/2014.

[13] “Nonin onyx ii pulseoximeter,” http://www.nonin.com/PulseOximetry/
Finger/Onyx9560, accessed: 10/07/2014.

[14] “Foracare testngo,” http://www.myglucohealth.net/, accessed:
10/07/2014.

[15] “Jawbone official website,” https://jawbone.com/up, accessed: 2014-05-
13.

[16] K. Voss, “Top 10 phone apps for home security,” http:
//www.securityoptions.com/top-10-apps-for-home-security-systems/,
2014, accessed: 10/07/2014.

[17] “Viper official website,” http://www.viper.com/SmartStart/, accessed:
10/07/2014.

[18] S. Stein, “Withings wireless blood pressure monitor supports an-
droid/ios, now available,” http://www.cnet.com/news/withings-
wireless-blood-pressure-monitor-supports-androidios-now-available,
2014, accessed: 10/07/2014.

[19] N. Wanchoo, “Fda approves mega electronic’s android-based emotion
ecg mobile monitor,” http://www.medgadget.com/2013/12/mega-
electronics-gets-fda-approval-for-android-based-ecg-monitor.html,
2013, accessed: 10/07/2014.

[20] J. Wick, “New interactive diabetes support tools manage mealtime
insulin dosing,” http://www.hcplive.com/articles/New-Interactive-
Diabetes-Support-Tools-Manage-Mealtime-Insulin-Dosing, 2014,
accessed: 10/07/2014.

[21] A. P. Felt, E. Chin, S. Hanna, D. Song, and D. Wagner,
“Android permissions demystified,” in Proceedings of the 18th
ACM conference on Computer and communications security, ser.
CCS ’11. New York, NY, USA: ACM, 2011. [Online]. Available:
http://doi.acm.org/10.1145/2046707.2046779 pp. 627–638.

[22] C.-C. Lin, H. Li, X. Zhou, and X. Wang, “Screenmilker: How to milk
your android screen for secrets,” 2014.

119

http://www.csc.ncsu.edu/faculty/jiang/pubs/NDSS12_WOODPECKER.pdf
http://www.csc.ncsu.edu/faculty/jiang/pubs/NDSS12_WOODPECKER.pdf
http://www.bodymedia.com/
http://www.nonin.com/PulseOximetry/Finger/Onyx9560
http://www.nonin.com/PulseOximetry/Finger/Onyx9560
http://www.myglucohealth.net/
https://jawbone.com/up
http://www.securityoptions.com/top-10-apps-for-home-security-systems/
http://www.securityoptions.com/top-10-apps-for-home-security-systems/
http://www.viper.com/SmartStart/
http://www.cnet.com/news/withings-wireless-blood-pressure-monitor-supports-androidios-now-available
http://www.cnet.com/news/withings-wireless-blood-pressure-monitor-supports-androidios-now-available
http://www.medgadget.com/2013/12/mega-electronics-gets-fda-approval-for-android-based-ecg-monitor.html
http://www.medgadget.com/2013/12/mega-electronics-gets-fda-approval-for-android-based-ecg-monitor.html
http://www.hcplive.com/articles/New-Interactive-Diabetes-Support-Tools-Manage-Mealtime-Insulin-Dosing
http://www.hcplive.com/articles/New-Interactive-Diabetes-Support-Tools-Manage-Mealtime-Insulin-Dosing
http://doi.acm.org/10.1145/2046707.2046779

[23] X. Zhou, S. Demetriou, D. He, M. Naveed, X. Pan, X. Wang, C. A.
Gunter, and K. Nahrstedt, “Identity, location, disease and more:
Inferring your secrets from android public resources,” in Proceedings of
the 2013 ACM Conference on Computer and Communications Security,
ser. CCS ’13. New York, NY, USA: ACM, 2013. [Online]. Available:
http://doi.acm.org/10.1145/2508859.2516661 pp. 1017–1028.

[24] M. Naveed, X. Zhou, S. Demetriou, X. Wang, and C. A. Gunter, “In-
side job: Understanding and mitigating the threat of external device
mis-bonding on android,” in Network and Distributed System Security
(NDSS) Symposium, 2014.

[25] S. Demetriou, X. Zhou, M. Naveed, Y. Lee, K. Yuan, X. Wang, and C. A.
Gunter, “What’s in your dongle and bank account? mandatory and
discretionary protection of android external resources,” unpublished.

[26] S. Smalley and R. Craig, “Security enhanced (se) android: Bringing
flexible mac to android,” in 20th Annual Network and Distributed System
Security Symposium (NDSS’13), 2013.

[27] “Android Developers Official Website manifest.permission,” https:
//developer.android.com/reference/android/Manifest.permission.html,
accessed: 10/07/2014.

[28] “Google play,” https://play.google.com/store/search?q=traffic+
monitor&c=apps, 2012, accessed: 10/07/2014.

[29] J. R. W. J. Joseph Tran, Rosanna Tran, “Smartphone-based glu-
cose monitors and applications in the management of diabetes: An
overview of 10 salient “apps“ and a novel smartphone-connected
blood glucose monitor,” http://clinical.diabetesjournals.org/content/
30/4/173.full, 2012, accessed: 10/07/2014.

[30] P. Brodley and leviathan Security Group, “Zero Permission An-
droid Applications,” http://leviathansecurity.com/blog/archives/17-
Zero-Permission-Android-Applications.html, accessed: 13/02/2013.

[31] “Shark for root,” https://play.google.com/store/apps/details?id=
lv.n3o.shark&hl=en, 2012, accessed: 10/07/2014.

[32] “Google play: Webmd for android,” http://www.webmd.com/
webmdapp, 2012, accessed: 10/07/2014.

[33] S. Chen, R. Wang, X. Wang, and K. Zhang, “Side-channel leaks in web
applications: A reality today, a challenge tomorrow,” in Security and
Privacy (SP), 2010 IEEE Symposium on, may 2010, pp. 191 –206.

120

http://doi.acm.org/10.1145/2508859.2516661
https://developer.android.com/reference/android/Manifest.permission.html
https://developer.android.com/reference/android/Manifest.permission.html
https://play.google.com/store/search?q=traffic+monitor&c=apps
https://play.google.com/store/search?q=traffic+monitor&c=apps
http://clinical.diabetesjournals.org/content/30/4/173.full
http://clinical.diabetesjournals.org/content/30/4/173.full
http://leviathansecurity.com/blog/archives/17-Zero-Permission-Android-Applications.html
http://leviathansecurity.com/blog/archives/17-Zero-Permission-Android-Applications.html
https://play.google.com/store/apps/details?id=lv.n3o.shark&hl=en
https://play.google.com/store/apps/details?id=lv.n3o.shark&hl=en
http://www.webmd.com/webmdapp
http://www.webmd.com/webmdapp

[34] D. J. Solove, “Identity Theft, Privacy, and the Architecture of Vulnera-
bility,” Hastings Law Journal, vol. 54, pp. 1227 – 1276, 2002-2003.

[35] J. Camenisch, a. shelat, D. Sommer, S. Fischer-Hübner, M. Hansen,
H. Krasemann, G. Lacoste, R. Leenes, and J. Tseng, “Privacy
and identity management for everyone,” in Proceedings of the
2005 workshop on Digital identity management, ser. DIM ’05.
New York, NY, USA: ACM, 2005. [Online]. Available: http:
//doi.acm.org/10.1145/1102486.1102491 pp. 20–27.

[36] H. Berghel, “Identity theft, social security numbers, and the web,”
Commun. ACM, vol. 43, no. 2, pp. 17–21, Feb. 2000. [Online].
Available: http://doi.acm.org/10.1145/328236.328114

[37] S. B. Hoar, “Identity Theft: The Crime of the New Millennium,” Oregon
Law Review, vol. 80, pp. 1423–1448, 2001.

[38] T. Govani and H. Pashley, “Student awareness of the privacy implica-
tions when using facebook,” unpublished paper presented at the ”Privacy
Poster Fair” at the Carnegie Mellon University School of Library and
Information Science, vol. 9, 2005.

[39] “Get search, twitter api,” https://dev.twitter.com/docs/api/1/get/
search, 2012, accessed: 10/07/2014.

[40] “Lookup ip address location,” http://whatismyipaddress.com/ip-
lookup, 2013, accessed: 10/07/2014.

[41] “Wifi coverage map,” http://www.navizon.com/navizon coverage
wifi.htm, accessed: 13/02/2013.

[42] “The google directions api,” https://developers.google.com/maps/
documentation/directions/, 2013, accessed: 10/07/2014.

[43] “Locate family,” http://www.locatefamily.com/, 2013, accessed:
10/07/2014.

[44] “Standard address abbreviations,” http://www.kutztown.edu/admin/
adminserv/mailfile/guide/abbrev.html, 2013, accessed: 10/07/2014.

[45] “Nonin onyx ii pulseoximeter specs,” http://www.nonin.com/
products.asp?ID=39&sec=2&sub=9, accessed: 10/07/2014.

[46] “Bodymedia puts a spin on the ordinary testing procedure,” http://
blog.bodymedia.com/page/6/, 2012, accessed: 10/07/2014.

[47] C. Daniels, “Why is too much insulin bad?” http://
www.livestrong.com/article/423665-why-is-too-much-insulin-bad/,
accessed: 10/07/2014.

121

http://doi.acm.org/10.1145/1102486.1102491
http://doi.acm.org/10.1145/1102486.1102491
http://doi.acm.org/10.1145/328236.328114
https://dev.twitter.com/docs/api/1/get/search
https://dev.twitter.com/docs/api/1/get/search
http://whatismyipaddress.com/ip-lookup
http://whatismyipaddress.com/ip-lookup
http://www.navizon.com/navizon_coverage_wifi.htm
http://www.navizon.com/navizon_coverage_wifi.htm
https://developers.google.com/maps/documentation/directions/
https://developers.google.com/maps/documentation/directions/
http://www.locatefamily.com/
http://www.kutztown.edu/admin/adminserv/mailfile/guide/abbrev.html
http://www.kutztown.edu/admin/adminserv/mailfile/guide/abbrev.html
http://www.nonin.com/products.asp?ID=39&sec=2&sub=9
http://www.nonin.com/products.asp?ID=39&sec=2&sub=9
http://blog.bodymedia.com/page/6/
http://blog.bodymedia.com/page/6/
http://www.livestrong.com/article/423665-why-is-too-much-insulin-bad/
http://www.livestrong.com/article/423665-why-is-too-much-insulin-bad/

[48] “ithermometer,” http://www.ithermometer.info/, accessed:
10/07/2014.

[49] “hcidump,” http://www.linuxcommand.org/man pages/
hcidump8.html, accessed: 10/07/2014.

[50] D. Spill and A. Bittau, “Bluesniff: Eve meets alice and bluetooth,” in
Proceedings of USENIX Workshop on Offensive Technologies (WOOT),
2007.

[51] S. Bluetooth, “Bluetooth core specification version 2.1+ edr,” Specifica-
tion of the Bluetooth System, 2007.

[52] “Android Developers Official Website android bluetoothadapter
class,” http://developer.android.com/reference/android/bluetooth/
BluetoothAdapter.html, 2013, accessed: 10/07/2014.

[53] “Spooftooph,” http://www.hackfromacave.com/projects/
spooftooph.html, 2013, accessed: 10/07/2014.

[54] “Getting ibluetooth instance,” http://snipplr.com/view/49526/, 2011,
accessed: 10/07/2014.

[55] “Demos for our bluetooth misbonding attacks,” [https:
//sites.google.com/site/edmbdroid/], accessed: 10/07/2014.

[56] M. Handy and D. Timmermann, “Time-slot-based analysis of bluetooth
energy consumption for page and inquiry states,” accessed: 10/07/2014.

[57] S. Bluetooth, “Specification of the bluetooth systemversion 2.0,
4. november 2004,” https://www.bluetooth.org, 2004, accessed:
10/07/2014.

[58] “Java cryptography extension,” http://www.oracle.com/technetwork/
java/javase/documentation/index.html, accessed: 10/07/2014.

[59] “Bouncycastle library,” http://www.bouncycastle.org/, accessed:
10/07/2014.

[60] “Spongycastle library,” http://rtyley.github.io/spongycastle/, accessed:
10/07/2014.

[61] “SEACAT demos website,” https://sites.google.com/site/
seacatchannelcontrol/, accessed: 10/07/2014.

[62] “Square Security official website,” https://squareup.com/security, ac-
cessed: 10/07/2014.

[63] B. Dwyer, “Paypal here vs. square,” http://www.cardfellow.com/blog/
paypal-here-vs-square/, accessed: 10/07/2014.

122

http://www.ithermometer.info/
http://www.linuxcommand.org/man_pages/hcidump8.html
http://www.linuxcommand.org/man_pages/hcidump8.html
http://developer.android.com/reference/android/bluetooth/BluetoothAdapter.html
http://developer.android.com/reference/android/bluetooth/BluetoothAdapter.html
http://www.hackfromacave.com/projects/spooftooph.html
http://www.hackfromacave.com/projects/spooftooph.html
http://snipplr.com/view/49526/
[https://sites.google.com/site/edmbdroid/]
[https://sites.google.com/site/edmbdroid/]
https://www.bluetooth.org
http://www.oracle.com/technetwork/java/javase/documentation/index.html
http://www.oracle.com/technetwork/java/javase/documentation/index.html
http://www.bouncycastle.org/
http://rtyley.github.io/spongycastle/
https://sites.google.com/site/seacatchannelcontrol/
https://sites.google.com/site/seacatchannelcontrol/
https://squareup.com/security
http://www.cardfellow.com/blog/paypal-here-vs-square/
http://www.cardfellow.com/blog/paypal-here-vs-square/

[64] Q. Sun, D. R. Simon, Y.-M. Wang, W. Russell, V. N. Padmanabhan,
and L. Qiu, “Statistical identification of encrypted web browsing traffic,”
in IEEE Symposium on Security and Privacy. Society Press, 2002.

[65] S. Bluetooth, “Rfcomm with ts 07.10,” Bluetooth SIG, 2003.

123

	List of Tables
	List of Figures
	LIST OF ABBREVIATIONS
	CHAPTER 1 Introduction
	Motivation
	Problem Statement
	Approach
	Thesis Contributions
	Thesis Organisation

	CHAPTER 2 Background
	Android OS
	Architecture Overview
	Android Boot Sequence and the Zygote Process

	Android Security Model
	Application Sandbox
	Permission Model
	SELinux on Android

	Android's Resources
	Android's Local Resources
	Android's External Resources

	CHAPTER 3 Side-Channel Attacks using Local Resources
	Adversary Model
	Side-Channel 1: per-App Network Traffic
	Usage Monitoring and Analysis
	Health Data
	Identity
	Investment Data

	Side-Channel 2: ARP Info
	Location Inference
	Attack Evaluation

	Side-Channel 3: Speaker Status
	Driving Route Inference
	Attack Methodology
	Attack Evaluation

	CHAPTER 4 Attacks on external resources
	Bluetooth Mis-Bonding Attacks
	Adversary Model and Targeted Bluetooth Devices
	Data-stealing Attacks
	Data-injection Attacks
	Measuring the DMB threat
	Study Results

	Other External-Resources Attacks
	Methodology
	Study Results

	CHAPTER 5 Defence: Guarding the vulnerable local and external Android resources
	Mitigating the Side-Channel Threats on Local Resources
	Mitigation Strategies
	Enforcement Framework
	Defence Evaluation

	DABINDER: Thwarting the DMB Threat
	Overview
	Design and Implementation
	Evaluation

	SEACAT: DAC and MAC on External Resources
	Design Overview
	Policy Specification and Management
	Policy Compliance Check and Enforcement
	Evaluation

	CHAPTER 6 Conclusion and Discussion
	REFERENCES

