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Abstract—The pervasiveness of security-critical external re-
sources (e.g accessories, online services) poses new challenges to
Android security. In prior research we revealed that given the
BLUETOOTH and BLUETOOTH_ADMIN permissions, a malicious
app on an authorized phone gains unfettered access to any
Bluetooth device (e.g., Blood Glucose meter, etc.). Here we further
show that sensitive text messages from online banking services
and social networks (account balance, password reset links, etc.)
are completely exposed to any app with either the RECEIVE_SMS
or the READ_SMS permission. Similar security risks are present
in other channels (Internet, Audio and NFC) extensively used to
connect the phone to assorted external devices or services. Fun-
damentally, the current permission-based Discretionary Access
Control (DAC) and SEAndroid-based Mandatory Access Control
(MAC) are too coarse-grained to protect those resources: whoever
gets the permission to use a channel is automatically allowed to
access all resources attached to it.

To address this challenge, we present in this paper SEACAT,
a new security system for fine-grained, flexible protection on
external resources. SEACAT supports both MAC and DAC, and
integrates their enforcement mechanisms across the Android
middleware and the Linux kernel. It extends SEAndroid for
specifying policies on external resources, and also hosts a DAC
policy base. Both sets of policies are managed under the same
policy engine and Access Vector Cache that support policy checks
within the security hooks distributed across the framework and
the Linux kernel layers, over different channels. This integrated
security model was carefully designed to ensure that misconfig-
ured DAC policies will not affect the enforcement of MAC policies,
which manufacturers and system administrators can leverage to
define their security rules. In the meantime, a policy management
service is offered to the ordinary Android users for setting policies
that protect the resources provided by the third party. This
service translates simple user selections into SELinux-compatible
policies in the background. Our implementation is capable of
thwarting all known attacks on external resources at a negligible
performance cost.

* The two lead authors are ordered alphabetically.

I. INTRODUCTION

The prosperity of the Android ecosystem brings in a broad
spectrum of external resources (accessories, web services,
etc.), which vastly enrich Android devices’ functionalities.
Nowadays, people use smartphone accessories not only for
convenience and entertainment (e.g., Bluetooth earpieces, USB
travel chargers, etc.), but for performing critical tasks related
with domains such as healthcare and fitness (e.g., diabetes
self-management [34]), finance (e.g., creditcard payments [8])
and even home security [32]. Furthermore, web resources
are extensively utilized to support Android applications (apps
for short), providing sensitive services like mobile banking,
monetary transactions and investment management [11], [3].
Those external resources carry private user information (health,
finance, etc.) and are responsible for security-critical operations
(i.e., home security). However, it is not clear whether they are
sufficiently protected by mobile operating systems (OS).

External resource protection on Android. In a previous study
we showed that an unauthorized app with the BLUETOOTH
and BLUETOOTH_ADMIN permissions can acquire unfettered
access to Android’s Bluetooth healthcare accessories, and
download sensitive medical data such as a patient’s blood
sugar level from them [28]. Also discovered in prior research is
that network sockets opened by screenshot services are exposed
to any apps with the INTERNET permission, allowing them to
capture the screen of an Android phone at any given point [24].
Note that this lack of control on the network channel can also
have other consequences: for example, given the INTERNET
permission, an untrusted game app might be able to directly
communicate with a corporate internal server, as an authorized
app does. Even popular mobile credit-card payment systems
were known to be vulnerable [26]: it is reported that credit-card
information transmitted by the Square dongle to its mobile app
through the Audio jack was not encrypted and could be easily
picked up by any app with the AUDIO permission.

Although the problem with Square was later fixed with
an AES encryption scheme built into its dongle (which
increases the cost of the device), such accessory/app side
solutions are rather ad hoc, whose security qualities are hard to
control. Actually, most external resources today are completely
unprotected, for reasons such as the desire to make things easy
for users, limited capabilities of accessories, cost constraints, etc.
Indeed, in our research, we successfully exploited the popular
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Jawbone UP wristband [6] (an activity tracker recording a user’s
sleep, eating habits and other daily activities) through the Audio
channel, and downloaded all its data using an unauthorized
app (Section III-B). This lack of protection is also ubiquitous
in apps receiving sensitive information from online resources
through Short Message Service (SMS) and those connected
to external devices using Near-Field Communication (NFC).
More specifically, we analyzed high-profile online financial
services (Bank of America, Chase, PayPal, etc.) and social
networks (Facebook, Twitter, etc.) that deliver messages to
their customers’ devices (which should be received by the
system app com.android.sms or the official apps of those
services), and popular apps that have the NFC capability, and
concluded that they are all vulnerable. Again, we found that
unauthorized apps could get the user’s messages once they are
granted the RECEIVE_SMS or READ_SMS permission, and
read from the NFC devices they are not supposed to touch when
they possess the NFC permission. Of particular concern here are
the short messages from banks, which often contain sensitive
information such as a password for two-factor authentication,
account balances, etc., and therefore should only be seen by
their customers through com.android.sms or other official
apps provided by the vendor. In addition, messages from Twitter
and Facebook even carry links for resetting account passwords.
Such information turns out to be completely unprotected from
unauthorized apps. Demos for the attacks are posted on a private
website [7].

Such threats to external resources are both realistic and
serious, given the fact that indeed a lot of not-so-trustworthy
apps do ask for related permissions (with a good reason for
doing so sometimes) and have already been used by hundreds
of millions of Android users. Take RECEIVE_SMS as an
example. Popular third-party apps like Go Locker (50,000,000
to 100,000,000 installations) use it to receive messages (in
this case, displaying the message on the lock screen). Our
study on 13,500 highly-ranked apps (500 top apps from
each of the 27 Google Play categories) from Google Play
shows that altogether 560 apps require the RECEIVE_SMS
or the READ_SMS permission, gleaning totally over 3 billion
installations (Section III-B). The problem is that once those
apps get the permission, they are also granted the privilege
to read any messages, including those from Chase with one’s
account details, from Facebook with the link for resetting the
password and from Life360 with the information about the
family members’ locations.

Fundamentally, Android is not designed to protect its exter-
nal resources. Specifically, the Discretionary Access Control
(DAC) mechanism Android provides to its user is based upon
permissions, which are meant for authorizing access to an
Android device’s local resources such as camera, SD card, etc.
When it comes to external resources, all permissions can do is
to merely control individual channels through which the phone
talks to external resources, such as Bluetooth, NFC, Internet,
SMS and Audio. This access control is too coarse-grained to
safeguard external resources of critical importance to the user,
as it cannot differentiate those attached to the same channel,
not to mention implementation of different access policies
to protect them. As a result, whoever gets the permission to
the channel (e.g., BLUETOOTH, AUDIO) is always given full
access to any resources associated with the channel. Even for
the emerging SEAndroid [30] powered kernel, a Mandatory

Access Control (MAC) mechanism incorporated into Android to
enable manufacturers or organizational administrators to specify
and enforce finer-grained security policies, it just covers local
resources (e.g., files) and cannot even assign a security tag to
an external resource.

Security-enhanced channel control. Given the ongoing trend
of using Android devices to support Internet of Things (IoT) for
security-critical applications (e.g., home security), it becomes
imperative to extend the Android security model to protect
its external resources. This needs to be done on both the
MAC and DAC layers. On one hand, device manufacturers
and organizational administrators should be given the means to
dictate the way their accessories and online resources should
be accessed by apps: for example, only an official Samsung
app is allowed to talk to the Samsung smart watch through
Bluetooth. On the other hand, flexibility needs to be granted to
ordinary users, who utilize third-party accessories (e.g., activity
tracking wristband) and interact with third-party online services
to manage their private information. For example, the user may
hope to install her favorite apps like Go Locker but wants to
ensure that they cannot read her bank’s messages. Development
of such protection mechanisms needs to be well thought-out, to
avoid two separate mechanisms with duplicated functionalities,
which complicates both the implementation and operations of
the security model.

To tackle this prevalent problem, we developed in our
research a suite of new techniques that protect Android external
resources through mediating the channels they use to interact
with the phone. Our approach, called SEACAT (Security-
Enhanced Android Channel Control), integrates both MAC
and DAC in a way that their policy compliance checks and
enforcement go through the same mechanism. This integration
simplifies the design of SEACAT and reduces its operational
overheads. In the meantime, it is warily constructed, to avoid
any interference between these two security models, ensuring
that MAC policies are always followed even when DAC has
been misconfigured by the user. More specifically, we extended
SEAndroid’s implementation on AOSP to describe the external
resources over different channels. This is achieved by defining
new SEAndroid types to represent the resources based upon
their identities observed from their channels, including the MAC
address of the Bluetooth accessory, the serial number of an
NFC device, the IP address of a socket and the ID of an SMS
sender. These types allow a system administrator to specify a
set of mandatory security policies, which are enforced by the
security hooks we placed at system functions related to those
channels within both Android’s framework/library layer and the
Linux kernel. Whenever a call is generated, the hook checks
its policy compliance through an SEAndroid function, and then
determines whether to let the call go through in accordance
with the outcome of the check.

Such operations are always applied to MAC policies first.
For the system calls cleared of the MAC policies (that is,
the calling processes are not touching any resources specified
by the policy administrator), the hook further checks their
compliance with a set of DAC policies, using the same function.
These policies are defined in the same format as their MAC
counterparts. They are maintained by a policy management
service, through which an Android user and app developers can
specify how an external device or an Internet service should be
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accessed by different apps, when those external resources are
not included in any MAC policy. For example, the official app
of the Chase bank can specify within its manifest file a DAC
rule that only itself and the system app (com.android.sms)
are allowed to receive text messages from the bank. Once this
rule is approved by the phone user, a malicious app running
on the phone will no longer be able to read messages from
Chase, even when it has either the RECEIVE_SMS or the
READ_SMS permission. Furthermore, this hybrid MAC/DAC
approach enables SEACAT to protect even resources with
no apparent identifiers: a user can leverage SEACAT’s DAC
component to restrict access to a channel when that is being
used to communicate sensitive information.

We implemented SEACAT on Android 4.4 with the SEAn-
droid enhanced kernel 3.4.0 (AOSP 4.4.2 r12). Our prototype
was run against all known attacks on different external resources,
including the new ones we discovered in this work and those
reported in prior research [28], [24]. Our study shows that
SEACAT easily defeated all those attacks, at a very low
performance overhead.

Contributions. We outline the paper’s contributions below:

• New understanding. We investigated a set of channels that
have not been systematically studied by prior research [28],
[24], including SMS, Audio and NFC. Our findings provide
further evidence pertaining Android’s limitations in securing
its external resources and highlight the need for finer-grained
access control techniques to protect them.

• New techniques. We designed the first mechanism that
provides a centralized and comprehensive protection of different
kinds of Android external resources over their channels. Our
approach supports both MAC and DAC in an integrated, highly
efficient way, without undermining their security guarantees.
These new techniques allow both system administrators and
ordinary Android users to specify their policies and safeguard
their accessories and other external resources.

• Implementation and evaluation. We implemented our design
and evaluated our system against all known threats and also
measured its performance. Our prototype successfully addresses
all known security risks and can be swiftly extended to protect
new channels.

II. BACKGROUND

Android external resources and channels. Android and other
mobile systems are routinely employed by their owners for
managing their external resources. Particularly, almost every
app running on these systems is supported by a remote service,
which interacts with the app through the Internet or the
telephone network (using short text messages). Such services
are increasingly being utilized to store and process private user
information, particularly the data related to online banking, so-
cial networking, investment, healthcare, etc. Moreover, the trend
of leveraging smartphones to support the Internet of Things,
brings in a whole new set of external devices, which carry
much more sensitive data than conventional accessories (e.g.,
earpieces, game stations). Examples include health and fitness
systems (e.g., blood pressure monitors [31], electrocardiography
sensors [33], glucose meters [23]), remote vehicle controllers

(e.g., Viper SmartStart [10]), home automation and security
systems [32] and others. Those external devices and Internet
resources are connected to smartphones through a variety of
channels, which are essentially a set of hardware and software
through which an app accesses the external resources. The most
popular channels include Bluetooth, NFC, Internet, SMS and
Audio.

Android security model. Android comes with a discretionary
access control system characterized by its application sand-
boxing and permission model. Naturally, all third-party apps
are considered untrusted by the system. Each Android app is
confined within its own sandbox, which is enforced through
the Linux-kernel level protection: every app runs as a separate
Linux user whose data and process are isolated from those of
other apps. To access the resources outside its sandbox, the
app can get permissions from the system if it is signed by
the manufacturers or other authorized parties or directly from
the device owner when the app is installed. Those permissions
enable the app to use sensitive resources such as GPS, camera,
etc. This security model has been implemented across different
Android layers, including the application-framework/library
layer (also called middleware) and the Linux kernel layer.
A problem of this security model is its coarse granularity.
Specifically, for each channel an app needs to go through to
touch external resources, the permission-based DAC is binary:
the app is either granted unrestricted use of the channel to
communicate with any resources attached to it, or denied
the channel in its entirety. This is the root cause for the
Bluetooth mis-bonding problem we have reported in prior
research [28], in which any app with the BLUETOOTH and
BLUETOOTH_ADMIN permissions becomes entitled to access
sensitive patient data collected by a health-care device.

SEAndroid. Security-Enhanced Android is a mandatory access
control system built on top of Android [30]. It is designed
to mediate all interactions of an app with the Linux kernel
and other system resources. Furthermore, SEAndroid confines
even system daemons to limit the damage they can cause
once they are compromised. It also provides a centralized
policy configuration for system administrators and device
manufacturers to specify their policies.

More specifically, SEAndroid [30] associates with each
subject (e.g., process) and object (e.g., file) a security context
represented as a sequence user: role: domain or
type[: level] and indexed by a Security Identifier
(SID). The most important component here is the type1.
Under a type enforcement (TE) architecture, a security policy
dictates whether a process running within a domain is
allowed to access an object labeled with a certain type.
Following is a policy specified for all third-party apps:
allow untrusted_app shell_data_file:file
rw_file_perms. This policy states that all the apps
associated with the domain untrusted_app are allowed
to perform “rw_file_perms” operations on the objects
associated with the type shell_data_ file which is of
class2 file.

The SEAndroid module currently incorporated into the

1role is for role-based access and level for multi-level security.
2A class defines a set of operations that can be performed on all objects

associated with a type.
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AOSP (Android Open-Source Project) 4.3 and 4.4 defines
five domains within its policy files: platform_app;
shared_app; media_app; release_app and
untrusted_app. The last one is the domain assigned to
all third-party applications installed by the user, in accord
with Android’s adversary model. These policy files are
ready-only and compiled into the Android kernel code. They
are enforced by security hooks placed at different system
functions at the kernel layer. For example, the function open
is instrumented to check the compliance of each call with
the policies: it gets the type of the file to be opened and the
domain of the caller, and then runs avc_has_perm with the
SIDs of both the subject and object to find out whether this
operation is allowed by the policies. Here avc_has_perm
first searches an Access Vector Cache (AVC) that caches the
policies enforced recently and then the whole policy file. In
addition to the components built into the kernel, SEAndroid
also includes a separate middleware MAC (MMAC) that
works on the application-framework/library layer. The current
implementation of MMAC on AOSP is limited to just assigning
a security tag (seinfo) to a newly installed application.
When Zygote forks a process for an app to be launched, it uses
that tag in tandem with a policy file (seapp_contexts) to
decide which SELinux domain should be assigned to it.

The current design of SEAndroid still cannot achieve the
granularity for controlling external resources. It does not have
types defined for the address of a Bluetooth device, the serial
number for an NFC device, the SMS ID and the Audio port,
nor does it place security hooks at the channels related to such
resources. To control access to the resources, system functions
at both the kernel layer and the framework/library layer need
to be instrumented. SEAndroid does include a mechanism to
mediate a range of IP addresses a process can connect to.
However, the policy is hard-coded within the Linux kernel and
its enforcement has not been exposed to Android’s DAC. As
a result, an ordinary user cannot specify rules to protect her
Internet resources. In our research, we extended both the MAC
and MMAC layers that are currently integrated into AOSP
(Section IV), to protect those channels and further leveraged
the enforcement mechanism to support a DAC system that
guards a wide spectrum of external resources.

III. UNDERSTANDING THE THREATS

To understand the security threats to Android external
resources, we analyzed a set of prominent accessories and
online services that utilize popular channels. Our findings
echo the prior studies on Bluetooth and the Internet (local
socket connections) channels [28], [24]. In particular, we
previously found that security-critical Bluetooth devices are
under the threats of information stealing and data injection
attacks from an unauthorized app with the BLUETOOTH and
BLUETOOTH_ADMIN permissions [28]. In addition, others
illustrated that all no-root third-party screenshot services can
be exploited by a malicious app connecting to them through
the Internet channel, which can also be abused to break other
security policies, e.g., unauthorized access to enterprise internal
servers. This work further shows that the SMS, Audio and
NFC channels are equally under-protected, exposing private user
information like bank account balances, password reset links
etc. Those findings point to the security challenges posed by the

widening gap between the coarse-grained Android protection
and the current way of using external resources.

A. Methodology

Apps and external resources. In our study, we first looked
at the permissions for accessing main channels that apps
use to communicate with their external resources, including
Audio, NFC, SMS, Bluetooth and Internet. Our purpose is
to find out how pervasive these permissions are among third-
party apps and how popular those apps are among Android
users (indicating their willingness to grant the permissions to
the apps). To this end, we studied 13,500 top-ranking apps
collected from Google Play, whose total and average number
of installations are presented in Table I. Some of these apps
indeed need the permissions to provide services. An example is
GoLocker [5], which uses the RECEIVE_SMS permission to
record and process incoming messages, and notify the user of
the event on her lock screen. Others are just over-privileged [20],
asking for permissions they never use. Either way, Android
users have to grant those apps what they want in order to
install them, and many of them do, as indicated by billions of
installations reported by Google Play.

We further investigated whether the apps using these
permissions (particularly for Audio, NFC and SMS) to ex-
change sensitive data with their external resources do it in
a secure manner. This is important because if this resource-
app protection is not in place, other apps with the same
permissions can get their hands on the data, due to Android’s
coarse-grained control on the channels. For this purpose,
we chose from our collection a small set of top-ranking
apps handling private information, including 13 Audio and
17 NFC apps. For SMS, we looked into 14 popular online
services, including those provided by leading financial institutes
(Bank of America, Chase, Wells Fargo, PayPal) and social
networks (Facebook, Twitter, WhatsApp, WeChat, Naver Line,
etc.), and a web mail (Gmail). Those services communicate
with com.android.sms and sometimes, their own apps
using short text messages. For Bluetooth and Internet, privacy
threats to these channels have already been reported by prior
research [28], [24].

Table II provides examples for the apps and services used in
our study. All the services we analyzed clearly involve private
user data. Such sensitive information is also handled by all
five apps subjected to our analysis, i.e two credit-card-related
NFC apps, one credit-card-related Audio app, one fitness Audio
app and one app using SMS for two-step authentication. Some
other payment related apps using the Audio jack, are heavily
obfuscated and we were not able to decompile them using
popular de-compilation tools (dex2jar, apktool). Most of the
other apps in the Audio category are remote controllers or
sensors that work with a dongle attached to the phone’s Audio
jack. Although those devices do not appear to be particularly
sensitive (e.g., the camera that can be commanded remotely to
take pictures), such functionalities (e.g., remote control) could
have security implications when they are applied to control
more sensitive devices. Our study also reveals that the most
prevalent use of NFC apps is for reading and writing NFC tags
(tags with microchips for short-range radio communication),
which can be used to keep sensitive user data (e.g., a password
for connecting to one’s Wi-Fi access point) or trigger operations
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TABLE I: Environment Study: 13,500 top apps (500 top apps for each of 27 Google Play categories) from Google Play. #downloads (total and average) and #apps per sensitive
permission

No Permission(s) Total Downloads Average
Downloads

Number
of apps

1 READ SMS (and not 2) 1,519,670,000 11,965,906 127
2 RECEIVE SMS (and not 1) 641,104,000 3,727,349 172
3 1 AND 2 1,220,503,000 4,676,257 261
4 BLUETOOTH (and not 5) 1,968,116,000 9,283,566 212
5 BLUETOOTH ADMIN (and not 4) 0 0 0
6 4 AND 5 1,215,007,600 3,310,647 367
7 RECORD AUDIO (and not 8) 1,960,964,950 2,689,938 729
8 MODIFY AUDIO SETTINGS (and not 7) 417,355,500 1,662,771 251
9 7 AND 8 3,164,060,000 8,218,338 385
10 NFC 2,583,934,500 14,850,198 174
11 INTERNET 20,153,137,630 1,694,965 11890

TABLE II: Critical Examples

Channel App Usage # of downloads Details
AUDIO EMS+ Credit card reader 5,000 - 10,000 Decrypt : Creates a private key of RSA with hardcoded modulus

and private exponent. Uses it to load session key which is used in
AES to process messages from credit card dongle.

AUDIO UP Tracks sleep, physical activity
and nutritional info

100,000 - 500,000 Doesn’t include any authentication features. A repackaged app with
different credential is able to read existing data from the band.

SMS All bank services Alert messages and Text bank-
ing

NA Both SMS can be read by any app with SMS permission.Alert
messages: sensitive financial activity and amount info. Text banking:
receive, send money and check balance.

SMS Chat and SNS Authentication 100,000,000 - 1,000,000,000 2 step authentication; verification code sent via SMS.
NFC SquareLess Credit card reader 10,000 - 50,000 Reads credit card information. Malicious apps may also read credit

card data as this app does.
NFC Electronic

Pickpocket RFID
Credit card reader 10,000 - 50,000 Reads credit card information. Malicious apps may also read credit

card data as this app does.

(e.g., Wi-Fi connection). A more sensitive application of NFC
is payment through a digital wallet. However, related NFC
equipment is hard to come by.

Security analysis. Over those apps and services, we conducted
both dynamic and static analyses to determine whether there is
any protection in place when they use those channels. For SMS,
we simply built an app with the RECEIVE_SMS permission to
find out what it can get. All NFC apps were studied using NFC
tags, in the presence of an unauthorized app with the NFC
permission. For those in the Audio category, we analyzed
a Jawbone UP wristband, a popular fitness device whose
app (com.jawbone.up) has 100,000 to 500,000 downloads
on Google Play, to understand its security weakness. In the
absence of other Audio dongles, relevant apps were decompiled
for a static code inspection to find out whether there is any
authentication and encryption protection during those apps’
communication with their external devices. Specifically, we
looked for standard or home-grown cryptographic libraries (e.g.,
javax.crypto, BouncyCastle, SpongyCastle) within the code,
which are needed for establishing a secret with the dongles.
Also, the apps are expected to process the data collected from
their dongles locally, instead of just relaying it to online servers,
as a few payment apps do. This forces them to decrypt the data
if it has been encrypted. Finally, we ran those apps to check
whether a password or other secrets are needed to establish a
connection with their dongles. Our analysis was performed on
a Nexus 4 with Android 4.4.

B. Results

SMS. The SMS channel turns out to be intricate. Whenever the
Telephony service on the phone receives a text message from
the radio layer, the InboundSmsHandler puts it in an Intent,
and then calls SMSDispatcher to broadcast it to all the
apps that register with the event (SMS_RECEIVED_ACTION

or SMS_DELIVER_ACTION) and have the RECEIVE_SMS
permission. Also the InboundSmsHandler stores the mes-
sage to the content provider of SMS. Such a message is limited
to text content with up to 160 characters. To overcome this
constraint, the message delivered today mainly goes through
the Multimedia Messaging Service (MMS), which supports
larger message length and non-text content such as pictures.
What really happens when sending such a message (which can
include multimedia content) is that a simple text message is
first constructed and transmitted through SMS to the MMS
on the phone, which provides a URI for downloading the
actual message. Then, MMS broadcasts the message through
the Intent to recipients with the RECEIVE_MMS permission
and also saves the message locally through its content provider.
An app with the READ_SMS permission can query both the
SMS and MMS content providers for their contents. Our study
shows that this mechanism can leak sensitive information.

As expected, all short messages from leading online services
delivered to our Nexus 4 phone were fully exposed to the
unauthorized app with the READ_SMS or the RECEIVE_SMS
permission. Note that such messages should only be received
and read by com.android.sms to display their content to
the owner of the phone, as well as those services’ official apps:
for example, Facebook, Naver Line, WeChat and WhatsApp,
directly extract a verification code from their servers’ messages
to complete a two-step authentication on the owner’s behalf.

Information leaks through this under-regulated channel are
serious and in some cases, catastrophic. A malicious app
can easily get such sensitive information as account balances,
incoming/outgoing wire transfers, debit card transactions, ATM
withdrawals, a transaction’s history, etc. from Chase, Bank of
America and Wells Fargo, authorized amount for a transaction,
available credit, etc. from Chase Credit Card and Wells Fargo
Visa, and notifications for receiving money and others from
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PayPal. It can also receive authentication secrets from Facebook,
Gmail, WhatsApp, WeChat, Naver Line and KakaoTalk, and
even locations of family members from Life360, the most
prominent family safety online service. An adversary who
controls the app can also readily get into the device owner’s
Facebook and Twitter accounts: all she needs to do is to generate
an account reset request, which will cause those services to send
the owner a message with a reset link and confirmation code.
With such information, even the app itself can automatically
reset the owner’s passwords, by simply sending requests through
the link using the mobile browser. A video demo of those attacks
is posted online [7]. Note that almost all banks provide mobile
banking, which allows enrolled customers to check their account
and transaction status through SMS messages. Given the fact
that even among our collection of 13,500 apps, already hundreds
of third-party apps with the READ_SMS or RECEIVE_SMS
permission have been installed billions of times (see Table I),
for millions of users, their confidential information (account
details, authentication secret, etc.) has already been exposed to
those apps.

Audio. We analyzed the Jawbone UP wristband [6], one of the
most popular fitness devices that utilize the low-cost Audio
channel. The device tracks its user’s daily activities, when she
moves, sleeps and eats, and provides summary information to
help the user manage her lifestyle. Such information can be
private. However, we found that it is completely unprotected.
We ran an unauthorized app that dumped such data from the
device when it was connected to the phone’s Audio jack.

For all other apps in the Audio category, we did not have
their hardware pieces and therefore could only analyze their
code statically. Specifically, among all 5 credit-card reading
apps, PayPal, Square and Intuit are all heavily obfuscated, which
prevented us from decompiling them. Those devices are known
to have cryptographic protection and designed to send encrypted
credit-card information from their card readers directly to the
corresponding web services [9], [17]. The other two apps,
EMS+ and Payment Jack, were decompiled in our research. Our
analysis shows that both of them also receive ciphertext from
their card-reader dongles. However, they decrypt the data on
the phone using a hard-coded secret key. Since all the instances
of these apps share the same key, an adversary can easily
extract it and use it to decrypt a user’s credit-card information
downloaded from the app’s payment dongle. Furthermore, all
other apps, which either support sensors (e.g, wind meter) or
remote controllers (e.g., remote picture taking), are unprotected,
without authentication and encryption at all. This demonstrates
the challenge for the device manufacturer and app developer to
come up with a practical resource-device protection mechanism,
highlighting the need for an OS-level solution.

NFC. Android employs a dispatcher mechanism to decide
which app can access an NFC device or tag. The dis-
patcher will choose an app to get NDEF data and the
device/tag’s serial number, according to the priorities that
the apps register with through Intent-filters. These priorities
from the highest to the lowest are: NDEF_DISCOVERED,
TECH_DISCOVERED and TAG_DISCOVERED. The system
app (com.google.android.tag) runs with the lowest
priority. According to its priority, an app receives the Intent
that carries NDEF (NFC Data Exchange Format) data scanned
by the phone. When the NFC device/tag has no NDEF data (but

data in other formats) on it, the Intent dispatched to the app
just contains the serial number of the device/tag, not the data,
and the recipient is supposed to directly communicate with
the device/tag using the number to get the data. Also, when
multiple apps have the same priority, an “Activity Chooser”
dialogue will be presented to the user for selecting the receiving
app. This process negatively affects users’ experience as every
single time that a tag is discovered a pop-up box will appear,
even for the tag that has been used before [1], [2].

In our research, 5 out of 17 popular NFC apps (e.g., NFC
Tools) we found are used to read and write NFC tags 3. These
apps allow users to store any data on tags, including sensitive
information (e.g., a password for one-touch connection to
a Wi-Fi access point). However, there is no authentication
and encryption protection at all4. We ran an unauthorized
app with the NFC permission to collect data from the tag
whenever our Nexus phone touched it. The “Activity Chooser”
mechanism could offer some protection, but only in the case a
malicious app does not have a higher registered priority than the
legitimate one. This can be a problem, for example, when one
only uses the system NFC app, which has the lowest priority.
Also the approach cannot be used by system administrators to
enforce any mandatory policies. Android is also vulnerable
in the case that a malicious app is in the foreground with
foregroundDispatch enabled. When this happens, the
OS will send the Intent to that app allowing it data access.

Among the rest of the apps, NFC ReTag FREE utilizes the
serial number of an NFC tag to trigger operations. Again, since
the communication through the NFC channel is unprotected, a
malicious app can also acquire the serial number, which leaks
out the operation that the legitimate app is about to perform.
The only NFC app with protection is the NFC Passport Reader.
What it does is to use one’s birth date, passport number and
expiration date to generate a secret key for encrypting other
passport information. The problem is, once those parameters
are exposed, the adversary can recover the key to decrypt the
data collected from the NFC channel.

Discussion. From the 13,500 apps collected, we further note
that any app with the Internet permission (for 93% of them,
each has been installed 1,694,965 times on average, as shown
in Table I) can access any domain. With advertising already a
ubiquitous way for apps to profit, more and more apps request
the INTERNET permission to allow the ad component to work.
This creates privacy risks when such apps are being used in a
business or private network, as they can freely connect to any
internal servers, if proper protection is not in place. Therefore,
we believe that the capability to let users control access to
IP/domains is important. For example, an organization can
require its employees to set policies on their phones to ensure
that internal IPs are only accessed by its enterprise apps, not
Angry Birds.

Also we see nearly 600 third-party apps asking for the
BLUETOOTH or BLUETOOTH_ADMIN permissions, and hav-
ing been installed over 3 billion times (Table I). The presence of

3This is expected as this is one of the major use cases of NFC on Android [4]
4There are more expensive tags such as MIFARE that support encryption

and authentication. The app using those tags needs the user to manually enter
a secret. Clearly, they are not used for protecting the information like Wi-Fi
passwords, which should be passed to one’s device conveniently.
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these apps, which most likely are not fully trusted, constitutes a
serious threat to private user data stored on different Bluetooth
accessories (e.g., glucose meters [23]), as we have reported
in prior research [28]. Note that so far, there is no effective
way to address this issue. Although a framework-layer defense
mechanism (called Dabinder) has been proposed in our previous
work [28], that comes with inherent limitations, as it can
actually be bypassed by a malicious app with native code.
This is because the protection was implemented within the
Bluetooth service (Section IV-C, Figure 3), while native code
with the BLUETOOTH and BLUETOOTH_ADMIN permissions
can directly talk to the Bluetooth stack to establish a connection
with the external device. In Section IV, we describe a new
technique that provides comprehensive protection and supports
Mandatory Access Control on this channel.

IV. EXTERNAL CHANNEL CONTROL

Our study presented on Section III emphasizes the need for
a more fine-grained control over the channels of communication
with Android external resources, with strong security guarantees.
Ad-hoc solutions on each channel fall short of providing
such guarantees and further suffer from the lack of backward-
compatibility, flexibility, extensibility to future channels and
maintainability. In this section, we present the first design
for protecting Android’s external resources. Our system, called
SEACAT employs a flexible hybrid MAC/DAC approach. It
extends SEAndroid’s MAC to safeguard resources with distinct
resource identifiers such as SMS, NFC, Bluetooth and Internet,
and also adds in a DAC module to allow the user and app
developers to specify rules through simple and straightforward
user interaction for all these channels. In addition, its DAC
component allows control of channels even in the absence of
resource identifiers. We illustrate this on the Audio channel. We
implemented SEACAT on AOSP 4.4 r12 with an SEAndroid-
powered kernel 3.4.0.

A. Design Overview

Challenges. Our objective is to develop a simple security
mechanism that supports flexible fine-grained mandatory and
discretionary protection of various external resources through
controlling their channels of communication. Our solution
should also be extensible as potential channels, app functional-
ities and developer practices are hard to predict. Furthermore
the system has to be maintainable and easily manageable.
Lastly, our solution should be efficient, backward-compatible
and effective.

However, achieving this goal is by no means a smooth sail.
Here are a few technical challenges that need to be overcome
in our design and implementation.

• Limitations of SEAndroid. Today’s SEAndroid does not model
external resources. Even after it is extended to describe them,
new enforcement hooks need to be added to system functions
scattered across the framework/library layer and the Linux
kernel. For example, the Bluetooth channel on Android 4.4
is better protected on the framework layer, which has more
semantic information, while the control on the Internet should
still happen within the kernel. Supporting these hooks requires
a well though-out design that organizes them cross-layer under

a unified policy engine and management mechanism for both
MAC and DAC.

• Complexity in integration. The current Android already has
the permission-based DAC and SEAndroid-based MAC. An
additional layer of DAC protection for external resources could
complicate the system and affect its performance5. How to
integrate SEACAT into the current Android in the most efficient
way is challenging.

Design. To address these challenges and meet our objectives,
we have come up with a centralized design that integrates
policy compliance checks from both the framework and the
kernel layer, and enforces MAC and DAC policies within
the same security hooks (Figure 1). It safeguards all known
external resources in a unified way allowing its easy extension
to new channels. More specifically, the architecture of SEACAT
includes a policy module, a policy enforcement mechanism
and a DAC policy management service. At the center of the
design is the policy module, which stores security policies
and provides an efficient compliance-check service to both the
framework and the kernel layers. It maintains two policy bases,
one for MAC and the other for DAC. The MAC base is static,
which has been compiled into the Linux kernel in the current
SEAndroid implementation. The DAC base can be dynamically
updated during the system’s runtime. Both of them are operated
by a policy engine that performs compliance checks. The engine
is further supported by two Access Vector Caches (AVCs), one
for the kernel and the other for the framework layer. Each AVC
caches the policies recently enforced using a hash map. Due
to the locality of policy queries, this approach can improve the
performance of compliance checks. Since DAC policies are in
the same format as MAC rules, they are all served by the same
AVC and policy engine.

The enforcement mechanism comprises a set of security
hooks and two pairs of mapping tables. These hooks are placed
within the system functions responsible for the operations on
different channels over the framework layer and the kernel
layer. Whenever a call is made to such a function, its hook
first looks for the security contexts of the caller (i.e., app) and
the object (e.g., a Bluetooth address, the Sender ID for a text
message, etc.) by searching a MAC mapping table first and
then a DAC table. The contexts retrieved thereby, together with
the operation being performed, are used to query the AVC and
the policy engine. Based upon the outcome, the hook decides
whether to let the call go through. Just like the AVC, each
mapping table has two copies, one for the framework layer
and the other for the kernel. Also, the MAC table is made
read-only while the DAC table can be updated during runtime.

Both the DAC policy base and DAC mapping table are
maintained by the policy management service, which provides
the user an interface to identify important external resources
(from their addresses, IDs, etc.) and the apps allowed to access
them. Also it can check manifest files of newly installed apps
to extract rules embedded there by the developer (e.g., only
the official Chase app can get the text message from Chase)
to ask for the user’s approval. Those policies and the security

5Note that this new DAC cannot be easily integrated into the permission
mechanism, since the objects there (different Bluetooth devices, web services,
etc.) can be added into the system during runtime.
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We further modified libselinux, which is used by
Zygote, to assign the appropriate security context to the process
forked for an app. Our instrumentation within libselinux
enables loading user_seapp_contexts for retrieving the
security context associated with a user-defined policy. Note
that again, when an seinfo tag is found within both
seapp_contexts and user_seapp_contexts, its con-
text is always determined by the former, as the MAC policies
always take precedence. In fact the system will never create a
DAC policy for an external resource that conflicts with a MAC
policy. Nevertheless, if a compromised system app manages
to inject erroneous DAC policies, they will never affect or
overwrite MAC policies.

The design of SEACAT also allows the app developer to
declare within an app’s manifest the external resource the app
needs exclusive access to. With the user’s consent, the app
will get a domain and the resource will be assigned a type to
protect their interactions through a DAC rule. This approach
makes declaration of DAC policies convenient: for example,
the official app of Chase can state that only itself and Android
system apps are allowed to receive the text messages from
Chase; a screenshot app using an ADB service can make the
IP address of the local socket together with the port number
of the service off limit to other third-party apps.

External resource labeling. For standard local resources, such
as files, SEAndroid includes policies that guide the OS to find
them and label them properly. For example, the administrator
can associate a directory path name with a type, so that every
file stored under the directory is assigned that type. The security
context of each file (which includes its type) is always kept
within its extension, making it convenient to retrieve the context
during policy enforcement. When it comes to external resources,
however, we need to find a new way to label their identifiers and
store their tags. This is done in our research using a new MAC
policy file seres_contexts, which links each resource (the
MAC address for Bluetooth, the serial number for NFC, the
Sender ID for SMS and the IP/port pair of a service) to its
security context. The content of the file is pre-specified by the
system administrator and is maintained as read-only throughout
the system’s runtime. It is loaded into memory buffers within
the framework layer and the Linux kernel respectively, and
utilized by the security hooks there for policy compliance
checks (Section IV-C).

Labeling external resources for the DAC policies is much
more complicated, as new resources come and go, and the user
should be able to dynamically enable protection on them during
the system’s runtime. SEACAT provides three mechanisms for
this purpose: 1) connection-time labeling, 2) app declaration
and 3) manual setting. Specifically, connection-time labeling
happens the first time an external resource is discovered by
the OS, for example, when a new Bluetooth device is paired
with the phone. Also, as discussed before, an app can define
the external resource that should not be exposed to the public
(e.g., only system apps and the official Facebook app can get
messages from the Sender ID “FACEBOOK”). Finally, the user
is always able to manually enter new DAC policies or edit
existing ones through an interface provided by the system. Note
that, the user never actually deals with SELinux-like policies.
Those are automatically constructed when the user answers
simple questions such as “Please select the app you downloaded

for this accessory.”, or when she maps the ID “FACEBOOK”
to the Facebook app.

For different channels, some labeling mechanisms work
better than others. Bluetooth and NFC resources are marked
mainly when they are connected to the phone: whenever there
are apps assigned domains but not associated with any Bluetooth
or NFC resources, SEACAT notifies the user once a new
Bluetooth device is paired with the phone or an NFC device is
detected; if such a new device has not been protected by the
MAC policies, the user is asked to select, through an interface,
all apps (those assigned domains) that should be allowed to
access it (while other third-party apps’ access requests should
be denied). After this is done, a DAC rule is in place to mediate
the use of the device. Note that once all such apps have been
linked to external resources, SEACAT will no longer interrupt
the user for device labeling, though she can still use the policy
manager to manually add or modify security rules.

In our implementation, we modified a few system apps and
services to accommodate this mechanism. For Bluetooth, we
changed Settings, the Bluetooth system app and service.
When the Settings app helps the user connect to a newly
discovered Bluetooth device, it checks the device’s MAC
address against a list of mandatory rules. If the address is
not on the list, the Bluetooth service pops an interface to let
the user choose from the existing apps assigned domains but not
paired with any resources. This is done through extending the
RemoteDevices class. The MAC address labeled is kept in
the file user_seres_contexts, together with its security
context. This file is uploaded into memory buffers (for both
the kernel and the framework layer) for compliance checks.
For NFC, whenever a new device is found, Android sends an
Intent to the app that registers with the channel III-B. In our
implementation, we instrumented the NFC Intent dispatcher to
let the user label the device and specify the apps allowed to
use it when the dispatcher is working on such an Intent. This is
important when the NFC device is security critical, as now the
control is taken away from the potentially untrusted apps and
delegated to the user (if no MAC mechanism is in place) during
runtime. Furthermore, by providing this mechanism, the system
can protect itself, and it is deprived of any dependency on
end-to-end authentication between apps and external devices.
Lastly, by utilizing the association of apps with resources
specified in MAC and DAC policies, the user can read already
labeled tags directly, avoiding unnecessary interaction with
the “Activity Chooser” mechanism every single time an NFC
device is discovered, which immensely improves the usability
of the reading-an-NFC-device task. Again, the result of the
DAC labeling is kept in user_seres_contexts.

External resources associated with SMS and Internet are
more convenient to label through app declaration and manual
setting. As discussed before, an app can request exclusive
access to the text messages from a certain SMS ID. The user
can also identify within the interface of our policy manager a
set of SMS IDs (32665 for “FACEBOOK”, 24273 for “Chase”,
etc.) to make sure that only com.android.sms can get
their messages6. Also, there are cases where manual setting is
needed for Internet. For example an organization can require its
employees to set policies on their phones to ensure that internal

6The SMS IDs for services are public. It is easy to provide a list of well-
known financial, social-networking services to let the user choose from.
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that involve our instrumentations, and compared it with the
delay observed from the baseline (i.e., the unprotected Nexus 4).
Table V shows examples of the operations used in our research.
In the experiments, we conducted 10 trials for each operation
to compute its average duration. Note that comparison with
SEAndroid [30] is moot, as the hooks we placed to enforce
control over external resources are not present there. Thus the
operations we measured will provide the same result whether
on AOSP 4.4 or SEAndroid.

Specifically, we recorded the installation time for a new
app, which involves assignment of domains. The time interval
measured in our experiment is that between the moment
the PackageManager identifies the user’s “install” click
and when the BackupManagerService gets the Intent
for the completion of installing an app with 3.06 MB.
For Bluetooth, both the pairing and connection operations
were timed. Among them, the pairing operation recorded
starts from the moment it was triggered manually and ends
when the OnBondStateChanged callback was invoked by
the OS. For connection, we just looked at the execution
time of BluetoothSocket.connect. Regarding SMS, we
measure the time from when a SMS message is received
(processMessagePart) to when the message is delivered
to all the interested receivers and the process of querying the
SMS content provider. The Internet-related overhead was simply
found out from the network connection time.

The amount of time it takes to dispatch an NFC message
is related to the status of the target app: when it was in the
foreground, we measured the interval between dispatchTag
and the completion of the NfcRootActivity; otherwise,
our timer was stopped when setForegroundDispatch
was called. For the Audio channel, we recorded the time for
the call AudioRecord.startRecording to go through.

Results. The results of this evaluation are presented in Table V.
As we can see from the table, the delays introduced by
SEACAT are mostly negligible. Specifically, the overhead in
the installation process caused by assigning domains to an
app was found to be as low as 49.52 ms. Policy enforcement
within different security hooks (with policy checks) happened
almost instantly, with a delay sometimes even indistinguishable
from the baseline. In particular, in the case of NFC, even when
the unauthorized app with the NFC permission was running
in the foreground, our implementation almost instantly found
out its security context and denied its access request. The only
operation that brings in a relatively high overhead is labeling
an external device. It involves assigning a type to the resource,
saving the label to user_seres_contexts, updating the
DAC mapping table accordingly and even changing the DAC
policy base to enable authorized apps’ access to the resource
when necessary. On average, those operations took 189.44 ms.
Note that this is just a one-time cost, as long as the user does
not change the type given to a resource. An exception is Audio,
whose type is assigned whenever the dongle under protection is
attached to the Audio jack. Note that the user only experiences
this sub-second delay once per use of the accessory, which
we believe is completely tolerable. In our results we report
the absolute time needed to perform an operation, instead of
providing the percentage difference with the baseline. Doing
the latter is misleading in our case. Consider for example the
operation content://sms query(). On the baseline it

takes 2.7ms while the same operation costs 6.39ms on SEACAT.
While this entails a 137% slowdown, it is way below a user
perceivable delay [25], [15].

All the results presented here do not include the delay
caused by human interventions: for example, the time the user
takes to determine if an app or resource should be protected.
Such a delay depends on human reaction and therefore is hard
to measure. Also they only bring in a one-time cost, as subjects
(apps) and objects (resources) only need to be labeled once.
Actually, for NFC, our implementation could even remove the
need for human intervention during policy enforcement: in the
presence of two apps with the same NFC priority, the user
could be asked to choose one of them to handle an NFC event
whenever it happens, while under SEACAT, this interaction is
avoided if one of the apps is assigned in the domain authorized
to access the related NFC device and the other is not.

VI. RELATED WORK

SEAndroid. Our approach is built on AOSP, on top of the
partially integrated SEAndroid [30]. SEACAT leverages the
existing AVC and policy engine for compliance checks over
both MAC and DAC databases. By comparison, the current
implementation of SEAndroid does not offer any protection
for external resources: it neither can specify policies for this
purpose, nor does it have the right hooks to enforce such
policies. Particularly on the framework layer, the MMAC
mechanism within SEAndroid can only achieve the control
granularity at the permission level, a far cry from what is
expected to mediate external resources.

An improvement on MMAC has been proposed re-
cently [14], which, like SEACAT, also supports app-based
policies and user-specified policies. Further, the way it controls
content providers is similar to what we did when sanitizing the
list of messages to let an app access only those it is allowed to
read. Nevertheless, like SEAndroid, this prior work does not
offer any means to control external resources either. It cannot
label those devices, not to mention enforcing any policies. Also,
the approach is designed as an alternative to SEAndroid, which
comes with its own policy language and policy engine. By
comparison, SEACAT is carefully designed to be a natural
extension of AOSP to handle external resources.

External-device misbonding. This work is partially inspired
by our prior research on Bluetooth misbonding problems [28]
and work conducted by others on unauthorized screenshot tak-
ing [24]. Particularly, in prior work [28] we developed a security
mechanism, called Dabinder, to offer a fine-grained control
on Bluetooth devices. However, Dabinder is implemented on
the framework layer, inside the Bluetooth service which could
be bypassed by any app with native code. Native code can
be used to talk directly to the Bluetooth stack and in general
circumvent the framework protection. SEACAT works as an
integrated part of SEAndroid in AOSP, which offers protection
cross-layer, preventing unauthorized access to Linux devices.
Specifically for Bluetooth, SEACAT enforces policies directly
in the Bluetooth stack (see Figure 3), providing much stronger
security guarantees. Also importantly, Dabinder is designed to
be a DAC mechanism just for protecting Bluetooth devices,
while SEACAT offers centralized protection that enforces both
MAC and DAC policies, across multiple channels (Bluetooth,
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TABLE V: Performance Measurements in milliseconds (ms). Confidence Interval (CI) given for confidence level=95%

AOSP SEACAT
Operation mean stdev CI Operation mean stdev CI overhead (ms)
install app 1415.6 40.61 ±25.17 install app (label) 1465.2 76.07 ±47.15 49.52
Bluetooth pairing 1136.5 351.65 ±217.95 Bluetooth pairing (label) 1434.4 237.60 ±147.26 279.9
BluetoothSocket.connect 1699.1 770.22 ±477.38 BluetoothSocket.connect 1616 306.83 ±190.17 -83.1

BluetoothSocket.connect
(block)

6 3 ±1.86 -1693.1

dispatchTag 87.3 4.32 ±2.68 dispatchTag(MAC:allow) 96.9 4.63 ±2.87 9.6
dispatchTag(MAC:block) 113.1 3.57 ±2.21 25.8
dispatchTag(label+allow) 358.28 40.47 ±25.08 270.98

dispatchTag (foreground) 272 26.33 ±16.32 dispatchTag(allow foreground) 269 41.53 ±25.74 -3
dispatchTag(deny foreground) 132.5 21.76 ±13.49 -139.5

Ndef.writeNdefMessage(app
A)

197.1 6.17 ±3.82 Ndef. writeNdefMessage
(DAC/MAC allow)

190.89 14.61 ±9.06 -6.21

Ndef.writeNdefMessage(app
B)

112.4 12.45 ±7.72 Ndef. writeNdefMessage (un-
labeled)

117.5 16.36 ±10.14 5.1

SMS process message 94 7.3 ±4.52 SMS process message(allow) 106.5 8.11 ±5.03 12.5
SMS process message (redi-
rect)

154 12.11 ±7.51 60

content://sms query() filter
(10 messages)

2.7 1.1 ±0.68 SMS query() filter 6.39 2.4 ±1.49 3.69

Audio device connection 14.9 5.11 ±3.17 Audio device connection
(label+ connect)

177.6 21.92 ±13.59 162.7

AudioRecord.startRecording
(allow)

85.9 6.84 ±4.24 AudioRecord.startRecording
(allow)

95.6 16.75 ±10.38 9.7

AudioRecord.startRecording
(block)

7.2 3.58 ±2.22 -78.7

SMS, Internet, Audio and NFC) and its unified approach allows
easy extension to new channels.

Enhancing Android security model. Android permission
system has long been scrutinized and there is a line of research
on enhancing this security model [27], [21], [18], [12], [16],
[22], [19], [13]. Most related to our work is Porscha [29],
which controls the content an app can access on a phone for
digital rights management. For SMS messages, this has been
done through sending an IBE encrypted message to a Porscha
proxy on the phone, which further dispatches the message to
authorized apps according to a set of policies. Porscha needs
to make a substantial change to the SMS mechanism, adding
the proxy to intercept incoming messages and a new field in
MMS content provider for tagging messages. By comparison,
SEACAT just places hooks within the existing mechanism,
using SEAndroid for policy compliance check, and therefore is
much easier to integrate into today’s Android, and also offers
both mandatory and discretionary protection across-layers.

VII. CONCLUSION AND FUTURE WORK

In this paper, we present SEACAT, a new security system
that enhances today’s Android security model to protect external
resources. SEACAT was designed to provide integrated security
control through both MAC and DAC across different Android
layers. More specifically, we utilize the same policy engine and
AVC to support policy compliance checks on both MAC and
DAC policy sets, which were extended for setting policies
on external resources. Such checks are performed on the
Android framework layer as well as the Linux kernel, within
different security hooks placed there to control various channels
(Bluetooth, SMS, Internet, Audio and NFC). DAC and MAC
rules are enforced through the same security hooks. In the
meantime, a misconfigured DAC policy will not cause the
MAC rules to be circumvented. This new system provides
phone manufacturers and system administrators means to define
mandatory security policies. It also empowers ordinary Android
users to specify their own rules to protect resources from third

parties. SEACAT provides strong security guarantees, incurs a
negligible performance overhead, is backward-compatible and
in some cases it even improves users’ experience.

The current design of SEACAT only manages the 5 most
popular channels. A further step in this direction would extend
our enforcement mechanism to other channels, such as Wireless
and Infrared. SEACAT cannot provide MAC protection to
Audio, due to the lack of identifiers for the devices attached
to this channel. A solution could fingerprint different Audio
devices through probing them to inspect their responses.
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