
HanGuard: SDN-driven protection of smart home WiFi devices
from malicious mobile apps.

Soteris Demetriou
University of Illinois at
Urbana-Champaign

sdemetr2@illinois.edu

Nan Zhang
Indiana University, Bloomington

nz3@indiana.edu

Yeonjoon Lee
Indiana University, Bloomington

yl52@indiana.edu

XiaoFeng Wang
Indiana University, Bloomington

xw7@indiana.edu

Carl A. Gunter
University of Illinois at
Urbana-Champaign
cgunter@illinois.edu

Xiaoyong Zhou
Samsung Research America
zhou.xiaoyong@gmail.com

Michael Grace
Samsung Research America
m1.grace@samsung.com

ABSTRACT
A new development of smart-home systems is to use mobile apps
to control IoT devices across a Home Area Network (HAN). As ver-
i�ed in our study, those systems tend to rely on the Wi-Fi router to
authenticate other devices. �is treatment exposes them to the at-
tack from malicious apps, particularly those running on authorized
phones, which the router does not have information to control. Mit-
igating this threat cannot solely rely on IoT manufacturers, which
may need to change the hardware on the devices to support encryp-
tion, increasing the cost of the device, or so�ware developers who
we need to trust to implement security correctly. In this work, we
present a new technique to control the communication between the
IoT devices and their apps in a uni�ed, backward-compatible way.
Our approach, called HanGuard, does not require any changes to the
IoT devices themselves, the IoT apps or the OS of the participating
phones. HanGuard uses an SDN-like approach to o�er �ne-grained
protection: each phone runs a non-system userspace Monitor app
to identify the party that a�empts to access the protected IoT de-
vice and inform the router through a control plane of its access
decision; the router enforces the decision on the data plane a�er
verifying whether the phone should be allowed to talk to the device.
We implemented our design over both Android and iOS (> 95% of
mobile OS market share) and a popular router. Our study shows
that HanGuard is both e�cient and e�ective in practice.

CCS CONCEPTS
•Security and privacy!Mobile and wireless security;

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for pro�t or commercial advantage and that copies bear this notice and the full citation
on the �rst page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permi�ed. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior speci�c permission and/or a
fee. Request permissions from permissions@acm.org.
WiSec ’17 , Boston, MA, USA
© 2017 ACM. 978-1-4503-5084-6/17/07. . . $15.00
DOI: 10.1145/3098243.3098251

KEYWORDS
Android, iOS, wireless networks, IoT, security

1 INTRODUCTION
�e pervasiveness of Internet of�ings (IoT) devices has brought in
a new wave of technological advances in home automation. Accord-
ing to Gartner [29], 6.4 billion IoT devices will be online in 2016,
among which a signi�cant portion are smart-home systems like
smart thermostats [37, 61], �tness trackers, refrigerators, etc., and
the number is expected to go above 20 billion by 2020. Examples of
such devices include: the Belkin NetCam [13], a camera for stream-
ing surveillance video to a mobile phone; the iBaby monitor [38],
a device for remote babysi�ing; the Family Hub refrigerator [70],
which enables online checking of the fridge’s contents. Increas-
ingly, these devices are designed to communicate not only with
their servers in the cloud but also with other IoT devices and the
user’s phone over the Home Area Network (HAN), which is typ-
ically built around a Wi-Fi router. For example, Nest Protect Fire
sensors [60] are capable of propagating an alarm across multiple
sensors installed in di�erent rooms of a house. For the convenience
of management, such interconnected IoT equipment o�en relies on
the secure connections of HAN (Wi-Fi authentication) for protec-
tion and trusts all the computing systems on the same network. �is
treatment, however, completely exposes the device to the a�acks
from compromised local systems, a threat becoming increasingly
realistic.

Menace of local threats. Indeed, it has been reported that high-
pro�le WiFi-enabled smart home devices, including the WeMo
Switch and motion sensor [15, 45, 62, 79, 80], Belkin NetCam [71],
baby monitoring devices [82, 85, 86] and smart light bulbs [32], are
all vulnerable to a local a�ack: an adversary within the same HAN
is shown to be able to control those devices or steal sensitive user
information, e.g., live video streams [71], from them. Several studies
further reveal that this is possible since such devices have poor—or
no–authentication mechanisms [3, 35, 36, 46, 52, 63, 64, 73, 95] and
therefore easily fall prey to a local a�acker.

122

http://crossmark.crossref.org/dialog/?doi=10.1145%2F3098243.3098251&domain=pdf&date_stamp=2017-07-18

WiSec ’17 , July 18-20, 2017, Boston, MA, USA Demetriou et al.

Defending against such a�acks becomes particularly challeng-
ing when the IoT devices are controlled by phones: once the same
phone also carries malware (even when the app has nothing but
the network privilege), protecting the device it controls becomes
impossible at the network level, as the phone is completely legiti-
mate to access the device though the malicious app running on it is
not. Given the high smartphone penetration rates [67], the millions
of available mobile applications on both o�cial and third-party
markets [83], and the ease of distribution of such applications 1,
devices that can be reached through mobile apps can also become
an easy target to adversaries. Unfortunately, such adversaries are
not only realistic; they are on the rise [55, 66, 72]. Because of that
they become the main subject of study of many other academic
works [11, 34, 97, 99] while concerns are also raised on public com-
munication channels [40, 65, 81]. In our research we veri�ed that
IoT vendors tend to trust the local network (Section 2). �is makes
them vulnerable to a mobile adversary as we illustrate with a�acks
on real-world IoT devices, including theWeMo Switch,WeMo Mo-
tion,WeMo in.sight.AC1 and My N3rd. �e demos of these a�acks
can be found on a private website [7].

Addressing the issue here cannot solely rely on device manufac-
turers: business factors such as time to market and keeping the cost
of the device low but also operational factors such as low power
consumption, lead to the production of devices without encryption
capabilities [88]. In such cases, response to threats can only be
reactive and it would entail manufacturing a new version of the
device which would still leave users with the old version suscepti-
ble to a�acks. To make things worse, device manufacturers can be
slow in responding [22, 69] to security and privacy threats. Router
vendors have already identi�ed this threat. New hubs and routers
pushed onto the market are increasingly armed with various IoT
protections (e.g. Microso� Azure IoT hub [56], Google’s OnHub
router [33]. Integrating protection and management capabilities in
the router has signi�cant bene�ts as the infrastructure is already in
place in most households and it enables uni�ed policy management.
However, as mentioned above, security control at the router level
cannot succeed without knowledge of the OS-level situation within
an authorized mobile phone, particularly whether a request to a
target device comes from its o�cial app or an unauthorized party.
Fundamentally, a practical solution to the problem needs to bridge
the gap between the OS-level observation (apps making network
connections on a phone) and the network-layer view (requests from
the phone for accessing an IoT device), with minimum modi�ca-
tions on the HAN infrastructure and all the systems involved.

Situation-aware device access protection. A simple solution to
the problem is just inferring the identity of the app communicating
with an IoT device according to its tra�c �ngerprint. �is approach,
however, is unreliable and can be easily defeated by, for example,
a repackaged app that closely mimics the authorized program’s
communication pa�erns. Also, individual apps’ �ngerprints need
to be reliably generated, deployed and continuously updated, and
further to be checked on the router against each communication
�ow it observes, which adds cost to both the router developer
and the user. In this paper, we present a di�erent approach, a new
technique that achieves �ne-grained, situation-aware access control

1Android applications can be self-signed.

of IoT devices over a home area network. Our approach, called
HanGuard, distributes its protection logic across mobile phones and
the Wi-Fi router for jointly constructing the full picture of an IoT
access a�empt during runtime, which is then utilized to control
the access on the network layer. More speci�cally, on the phone
side, the information about the app making network connections
is collected and passed to the router; on the router side, security
policies are enforced to ensure that only an authorized app can
touch a set of functionalities the device provides. In this way,
malware on network-authenticated phones can no longer endanger
the operations of the IoT devices, even when the IoT devices are not
equipped with proper authentication and encryption protection.

HanGuard is designed to directly work on the existing HAN
infrastructure, without modifying mobile operating systems or
IoT devices. To deploy the system, one only needs to install a
Monitor app with non-system privileges on mobile phones and
update the �rmware of the Wi-Fi router with a security patch. A
key technical challenge here is how to gather situation information
(processes making network connections) on mobile phones, which
is not given to a third-party userspace app on both Android and iOS.
Although all these systems provide VPN support, the app using
the service still cannot observe the process generating tra�c and
will signi�cantly slow down the network communication of the
whole system (Section 3.2). To address the issue, we leverage side
channel information for lightweight discovery of runtime situation
on Android and utilize the VPN to only mark out authorized apps’
tra�c on iOS (Section 3.2). Such information is then delivered to the
router through a separate control channel, which is synchronized
with the tra�c generated by the app (over a data channel) and used
by the router to determine whether the communication should be
allowed to proceed.

We implemented our design over both Android and iOS which
cover more than 95% of the mobile OS marketshare [39], and a
TP-Link WDR4300v1 Wi-Fi router. Our evaluation shows that
HanGuard easily identi�ed and blocked all unauthorized a�empts
to access IoT devices with negligible overhead in the common case.
Our contributions. We summarize our contributions below:
• New understanding. We found that IoT vendors treat the HAN as
a trusted environment which leaves them vulnerable to malicious
apps in the HAN. We demonstrate how a weak mobile adversary
can exploit this with real-world a�acks on popular devices.
•New system techniques. We developed HanGuard, the �rst practical
and backward compatible protection against mobile app a�acks
on smart-home devices. To the best of our knowledge we are the
�rst to use phones as Monitors for local area SDN. Our design can
have applications in enterprise se�ings, peer-to-peer networks and
others.
• Implementation and evaluation. We implemented HanGuard on
both Android and iOS phones (> 95% of the mobile OS market
share), and a commercial router, and evaluated it against a�acks on
real-world IoT devices and on various performance metrics. Our
study demonstrates the practicality and e�cacy of the new system.

Roadmap. Section 2 presents our study on popular smart-home
devices; Section 3 presents HanGuard and Section 4 our evaluation;

123

HanGuard: SDN-driven protection of smart home WiFi devices. WiSec ’17 , July 18-20, 2017, Boston, MA, USA

Section 5 reviews related prior research and we conclude our work’s
presentation in Section 6.

2 SECURITY OF SMART-HOME DEVICES
We performed an analysis of IoT devices and demonstrate the secu-
rity implications stemming from a mobile adversary. Our �ndings
informed HanGuard’s design decisions.

Methodology. One approach for our study would be to investigate
the IoT devices’ �rmware. �at would entail—a�er identifying such
devices–�nding images of their �rmware or, for each device, buying
the device and extracting its �rmware. Subsequently, each �rmware
needs to be analyzed, which is a non trivial task [20]. However,
most of these devices are now controlled by mobile apps. �us their
control mechanisms can be examined by analyzing the apps instead
of the �rmware. Note that, our approach has multiple bene�ts over
analyzing �rmware: (1) we can easily acquire Android apps, (2)
there is no monetary cost, (3) it is generally easier and faster to
analyze mobile apps than an embedded device’s �rmware.

To discover Android apps for IoT devices, we searched for them
at Google Play using keywords such as “home automation” and
“internet of things”. �is, turned out to be not very e�ective: through
manual inspections of search outcomes, we found that many apps
identi�ed this way were not related to any IoT systems and in
the meantime, popular IoT apps fell through cracks. Our solution
is to crawl iotlist.co, a popular site for discovering IoT products.
From the list, the crawler we ran collected the meta-data of 353
products, including “Title”, “Description”, “Product Url”, “Purchase
Url” and others. Such data was further manually checked to identify
a list of package names for the o�cial apps of these devices. Our
crawler used this list to download the apps and their meta-data
from the Play store. Out of the 353 products, we found that 63%
(223) of them have apps on Google Play, 2% (7) are iOS only and
the rest are mostly un�nished products (listed on kickstarter.com
and indiegogo.com) or are no longer available. �is indicates that
indeed most IoT devices today are controlled by smartphones. We
further used popular reverse engineering tools (e.g. apktool [94],
dex2jar [30]) to facilitate manual inspection of their source code.

Focus on home automation IoT. To be�er understand the oper-
ations of smart home devices, we manually went through (1) the
meta-data of the collected products, (2) their online documenta-
tions and websites, and (3) through their apps’ source code when
available. Figure 1 illustrates our manual categorization of the
IoT products based on their functionality. Note that the Wear-
ables category (31%) embodies mostly �tness and location trackers,
smartwatches and personal medical devices. We call such devices
personal devices; these commonly use Bluetooth to connect to a
smartphone app. Previous work has already studied the security
of personal devices, they found problems with encryption and au-
thentication and proposed solutions [24, 59]. From the �gure, we
can also see that most of the listed IoT devices (55%) are smart
home automation/entertainment/security/hub systems, which are
the focus of our study. We call these shared devices. Such devices
could directly bene�t from an access control scheme built within
the HAN. Previous work on shared devices, was focused on a single
IoT integration platform (hub) [26, 27].

2%3%5%

8%

9%

13%

29%

31%
Automotives (2%)
Gardening (3%)
Home Entertainment
Hubs
Other
Home Security
Home Automation & Appliances
Wearables

Figure 1: IoT product functionality categorization.

Focus on local connections. Prior research already demonstrated
that the interaction between smartphone apps and the cloud is
alarmingly unguarded [18, 92]. On the other hand, the local commu-
nication between the apps and the devices is not as well understood.
In fact it is unclear whether app developers and IoT device manufac-
turers treat the local network and everybody connected to it as trusted
entities andwhether such treatments leave the devices susceptible to
a�acks from both local adversaries and remote adversaries that gain
access to the HAN. Moreover, even though it has been reported that
IoT devices come with serious problems [3, 35, 36, 46, 52, 64, 73, 95],
li�le has been done to understand the security risks stemming
from malicious mobile apps. �is is particularly important since,
IoT devices are controlled by apps which send commands either
through the cloud or the local network. Here, we aim to bridge
these gaps in knowledge. Our �ndings build on to the existing
evidence which collectively support the need for a uni�ed security
and management system built within the HAN to safeguard today’s
smart-home devices.

In particular, our IoT application study aims to achieve the fol-
lowing goals: (a) Find out whether vendors and developers of WiFi
smart home devices/apps erroneously treat the home area network
as a trusted environment; (b) Find out whether a mobile adversary
can take advantage of such a problematic trust model to a�ack local
smart home devices in practice.
(a) HAN Trust Model. We performed a statistical signi�cance
test focused on the following null hypothesis (N0): HAN apps with
only remote connections are equally likely to perform authentication
compared to HAN apps with only local connections. To answer this
question we separated our collected IoT apps into two groups. Apps
with only remote connections and apps with only localWiFi connec-
tions. We used 55 unique Android applications with WiFi/Internet
only connections to HAN IoT devices.

To separate the apps into the two groups, we manually went
through (1) their online documentations and websites, (2) public
forums, and (3) their Java Android code. We found that 22 (40%)
do perform some internet socket connection with local discovered
devices or �xed local IPs. 25 (45%) were found without local WiFi
connections, 5 (9%) we could not determine, for 2(4%) decompilation
failed, and 1 (2%) was by that time removed from Google Play. For
each of the 2 sets (local; no local) we analyzed them further to
discover whether they perform any authentication. For the ones
that perform only remote connections, we used a parsing tool that
searches for password requests in the layout �les of the apps. We
then manually veri�ed the existence/absence of a password request.
We found that all these apps do perform authentication.

For the 22 apps with local WiFi connections we could not simply
use the above tool since it would reveal li�le to no information on

124

WiSec ’17 , July 18-20, 2017, Boston, MA, USA Demetriou et al.

whether a password is used for a connection with the IoT device
or the cloud. �us we manually went through their code looking
for network API calls responsible for local connections (e.g. cre-
ation of sockets connecting to local IPs, or UPnP discovery). We
examined the calls to such APIs and found that 9 of the apps do not
authenticate to the IoT device.

To determine whether apps with local connections are less likely
to perform authentication one could perform a �2-test of indepen-
dence. In our case this was not suitable due to the small absolute
number of relevant available apps derived from iotlist.co. We in-
stead used the Fisher’s exact test [28]—a common approach to
derive statistically signi�cant results when the sample size is small.
We performed the test [17] on our null hypothesis (N0). A 2-sided
P value less than 0.05 was considered signi�cant. �e test yielded a
2-sided P-value of 0.00036 < 0.05 and thus we can reject N0. �ere-
fore, we can con�dently say that HAN apps with local connections
are less likely to get authenticated by IoT devices. �is validates an im-
portant intuition that IoT vendors consider the HAN to be a trusted
environment. However, given the fact that phones are an integral
part of such a network and that phones can carry self-signed apps
from third-party markets, this treatment becomes detrimental to
the security of HAN IoT devices.
(b)�e mobile adversary threat. �e previous �nding is partic-
ularly alarming. Next we wanted to validate that a weak mobile
adversary can take advantage of this problematic trust model and
trivially compromise smart home devices. Towards this end, we
cherry-picked four devices with local connections and authentica-
tion issues and performed real-world, practical a�acks. �e devices
we picked are listed on Table 1. Our targets include the WeMo
Switch and WeMo Motion [15], the WeMo in.sight.AC1 [14], and
My N3rd [57]. �e WeMo devices are examples of popular plug-
and-play devices. Just on Android, the o�cial app of the WeMo
devices was downloaded 100,000–500,000 times 2. Note that all the
WeMo devices are manufactured by a single vendor. By focusing
on three WeMo devices we want to showcase how an erroneous
trust model by a vendor can spread across various of its devices.
�is suggests that trusting the local network was a design decision
and not an implementation issue manifesting in an isolated device.
My N3rd, while not yet popular, it is chosen to showcase a new
category of do-it-yourself (DIY) devices. It allows one to connect it
to any other device enabling turning on/o� that device from the
My N3rd mobile app. Increasingly more such projects appear on
the market with Arduino-based projects taking the lead. While
exciting for users, such devices tend to inherit the problematic trust
model and allow an adversary to take full control of ones devices.
In our experiments we consider a mobile adversary that tries to
get unauthorized access to the IoT devices. �e mobile adversary
can perform an a�ack from an unauthorized phone, or from an
unauthorized app on an authorized phone 3. To test the above cases,
we use 2 Nexus phones. �e �rst one is assumed to be untrusted
and the second one is assumed to belong to one of the HAN users.
We then tried to access the target IoT devices using both phones.
Unfortunately we found that the adversary can trivially connect

2�is is a conservative number as people can download the app from alter-
native Android app markets or from iTunes for iOS devices.
3Note that the case of an unauthorized app on an unauthorized phone trivially reduces
to the �rst case we consider.

Table 1: Devices used in real-world attack demonstrations.

Target Device Description # App Installations
WeMo Switch Actuator 100K - 500K
WeMo Motion Sensor 100K - 500K
WeMo Insight Switch Actuator 100K - 500K
My N3rd Actuator 100 - 500

and control all devices. �e video demos of our a�acks can be found
online [7].

3 HANGUARD DESIGN & IMPLEMENTATION
Our previous �ndings (Section 2) highlight the need for an access
control system that can be integrated in home area networks with
minimal changes to the existing infrastructure, that is backward
compatible, independent of vendor and developer practices and
which allows the users the �exibility to manage and control who
should communicate to which device. In this section, we elaborate
on our design of such a system called HanGuard and its implemen-
tation over the HAN and mobile platforms.

3.1 Design Overview
Adversary model. As shown in Section 2, IoT devices are con-
trolled through smartphone apps. �ese devices are designed to
act blindly on the commands from authorized phones (based upon
their authentication with the HAN router). �is treatment becomes
increasingly problematic: while the smartphone may indeed belong
to a rightful user, the applications that it runs can come from less
known places (e.g., third-party app stores) and less trustworthy
developers (e.g., malware authors). Given smartphone penetra-
tion [67], prevalence and ease of distribution of mobile applica-
tions [83], adversaries can now �nd their way to the HAN through
a legitimate phone with minimal e�ort. Moreover—as demonstrated
in Section 2—given the erroneous threat model of today’s IoT de-
vices, which trusts all the requests issued from a trusted source
(a router or phone), such malicious applications can easily gain
unauthorized control of IoT devices (e.g. turning on/o� an actuator,
or reading the collected data of a sensor).

�warting such a�acks is inherently hard. A straightforward
solution is to implement a uni�ed security logic in the router, since
tra�c from applications to IoT devices goes through it. However,
the router alone does not have enough information to make any
application level access control decision. One could resort to traf-
�c �ngerprinting techniques to infer the application generating
the tra�c. �e approach can (1) be easily evaded by a malware
repackaged from an authorized app, (2) bring in false alarms and
(3) impacts the performance of the router.

HanGuard is designed to address the issue through bridging net-
work and application level semantics, associating an app’s identity
to its tra�c to enable a �ne-grained access control on IoT devices.
In the meantime, it does not modify both so�ware and hardware
of these devices, the operating systems of smartphones, and does
not make assumptions about the router hardware. For this purpose,
our adversary model is focused on the situation where a malicious
app is installed on a smartphone device authenticated to the HAN.
�e adversary is considered to already know the communication

125

HanGuard: SDN-driven protection of smart home WiFi devices. WiSec ’17 , July 18-20, 2017, Boston, MA, USA

SCN
1

SCN
n

SCN
2Controller

ROLE 1 ROLE 2 ROLE 3 ROLE M ROLE Guest

Domain: Lights

MCN

Controller

control channel
data channel

Admin Role

WPA2 key

Enforcement
Hook

Drivers

Router

LEGEND

Category tags

Domain: Cameras
Flow Table

Figure 2: HanGuard high level architecture.

protocol used by the victim IoT device. We further assume that the
smartphone hosting the app has not been compromised at the OS or
hardware level, which limits the adversary to the user land, at the
app level. Note that though outside our adversary model, HanGuard
can also provide coarser-grained protection against guest phones
and compromised phones, remote adversaries and more traditional
WiFi a�acks. Due to space limitations and to avoid confusion, we
defer this discussion to the Appendix A.

Idea and architecture. Figure 2 illustrates the architecture of
HanGuard. Our design is partially inspired by so�ware de�ned
networking (SDN) (see [49] for a survey), which separates the net-
work tra�c (data) from its management (control). In the meantime,
HanGuard is meant to be easily deployed to today’s HAN. Serving
this purpose is a distributed security control architecture that in-
cludes a Controller on a HAN router for policy enforcement and
a Monitor on the user’s phone for collecting its runtime situation
and making access decisions (which are enforced by the router). To
avoid changing the mobile OS, the Monitor is in the form of a user-
space app. It detects the app making network communication and
its compliance with security policies, and then pushes the access
permit to the router’s Controller through a secure control channel
(Section 3.2). �e router utilizes that information to enforce the
policy (Section 3.3): only the tra�c with a permit from the Monitor
is allowed to reach IoT devices.

In essence, this design preserves the data channel within which
unmodi�ed information from smartphone apps is propagated to
the router, and creates an independent control channel for security
decisions. Such a separation, it comes with obvious performance
bene�ts: no extra headers to be processed by the router on a per
packet basis in the data channel. It can also guarantee that control
information is always transmi�ed through a secure channel, and
allows the router to further enforce policies and ensure, even in
periods of heavy congestion, that security decisions are delivered
in a reliable manner. In addition, our design allows for a clear
separation of tasks: the security policies can be easily managed
by the user through a mobile app interface; the router reduces to
simply enforcing the �ow decisions. �is keeps the router as simple
as possible and allows for readily updating the security logic with
a mere application upgrade.

Policy Model. HanGuard implements an RBAC (role-based access
control) policy model which leverages type-enforcement and multi-
category security primitives. It uses them in a unique way to create

policy rules, to protect smart-home devices. However, HanGuard
does not need security experts to create the policies; policies are
generated at runtime and transparently to the user. In particular,
the user is only expected to perform simple mappings between a
�nite set of IoT apps, IoT devices and HAN users. Default policies
are automatically created during setup to further reduce users’ bur-
den. HanGuard’s access control model parses such mappings and
assigns a category tag to each app and its respective IoT device.
Further, each IoT device is labeled with a type. Types can be orga-
nized in overlapping groups called domains. Each mobile phone is
assigned a role and each role can be con�gured to access a number
of domains. For example, the iBaby camera can be labeled with
the type “babyMonitor t”. A domain “cameras d” can be created to
encompass the “babyMonitor t” type device among others. Lastly,
the role of a HAN user’s phone (e.g. “Adult”) that is supposed to be
able to access the cameras, can be con�gured as eligible to access
the “camera d” domain and in extend the “babyMonitor t” type
device. �e relation between the role and the domain ensures that
an untrusted phone (e.g., a visitor’s phone) cannot touch protected
devices and even an authorized phone, once compromised, cannot
communicate with the IoT devices it is not supposed to talk to. At
the same time, and orthogonally to the type-enforcement scheme,
the iBaby camera and its o�cial app, can be assigned the category
“iBaby”. �e category here binds a speci�c app on a phone to the
device the phone is authorized to access. For example, the role
“Adult” can be con�gured to access the domain “cameras d”; while
that stipulates that the adult’s phone can control the baby cameras,
access is not granted unless the app on her phone and the actual
baby camera that it tries to reach are tagged with the same category.
Note that more than one category tags can be associated with a
domain. �is enables the generation of a policy rule which allows
an app to access multiple devices of the same type.

By default, a phone registered with the HAN is assigned the
role “HAN user”, which is allowed to access the “Home” domain.
�e la�er encompasses every newly installed IoT device (which is
assigned a unique type). However, the access can only succeedwhen
the app on the phone is given the same category tag as the device
it a�empts to reach. Such an app-device binding is established
when the app is used to con�gure the device, which is established
through a special device, a phone or a PC, that takes the role of
an Admin. �is role can con�gure the router, register other user
phones, access all domains and update security policies. During
a policy update, new domains, roles and access relations between
them can be generated. �e policy model also handles unregistered
phones (e.g., those belonging to visitors), which connect to the Han
as a “Guest”, a role not allowed to interact with the devices in the
“Home” domain. A security policy is shared by the phone side and
the router side. Although its enforcement happens on the router, its
compliance check is performed jointly by the router and the phone.
�e former ensures that only the authorized phone, as indicated by
its role, can access the domain involving the device. �e la�er runs
the Monitor to inspect the app and the target device’s category tags
and asks the router to let their communication �ows go through
only when the category tags are the same. Next, we describe how
individual components of the system work.

126

WiSec ’17 , July 18-20, 2017, Boston, MA, USA Demetriou et al.

Figure 3: HanGuard Control Message delivered over TLS.

3.2 Phone-side Situation Monitoring
In our distributed access-control system, the Monitors are deployed
as user-space apps. �ey are aiming at identifying the subject
(app) trying to access an IoT device across the HAN, and determine
whether it is authorized. Such information is delivered through a
control message to the Controller module running on the router,
informing it the context of the access a�empt (since the router
cannot see the app initiating the communication), which helps the
router enforce appropriate security policies. Note that we designed
the system in a way that the workload on the router is minimized,
which is important in maintaining the performance level needed
for serving the whole local network. More speci�cally, the Monitor
launches at boot time to establish an ongoing secure connection
with the Controller module on the router. �rough the channel, the
situation on the phone is either pushed to, or pulled by the router
(Section 3.3), enabling it to perform a per-�ow (instead of per-packet)
access control. Further, the security policies (Section 3.1) are broken
into two parts: the Monitor checks whether an app is authorized to
access a device and asks the router to enforce its decision, while
the router implements a phone-level policy check as a second line
of defense, which protects the smart-home devices even when a
phone is fully compromised.

�e communication between the Monitor and the router goes
through a TLS control channel. �e control message delivered
through the channel is in the format illustrated in Figure 3. For
example, it includes a hash of the user credentials (username, pass-
word), the sender phone’s MAC address, an identi�er for the de-
tected �ow (IP/port), an identi�er for the app making the request,
the policy’s version number and a �ag indicating whether this �ow
should be allowed or not. �e negative �ag is used to mark sus-
picious behavior (detection). Flow termination is handled by the
router (Section 3.3).

Every registered phone on the HAN, can be assigned roles instan-
tiating an RBAC (Role-Based Access Control) scheme. Furthermore,
the phone used to con�gure the router is by default designated
as the Master Controller Node (MCN) and every other phone is
designated as the Slave Controller Node (SCN). A HAN user can
update the policy through the Policy Update Manager running in
her phone’s Monitor. A Monitor accepts policy updates only when
it is running on a master node and a�er verifying its user’s cre-
dentials. A distributed Policy Update Service intermediates policy
synchronization and replication in the system. Every connected
(reachable) node gets the latest policy replica as soon as it connects
to the network or when there is an update. Unregistered devices
are automatically assigned the “Guest” role as soon as they join
the network. Each Monitor has a local in-memory replica of the
policy base, that allows it to make decisions for its own tra�c e�-
ciently, alleviating the router from further processing. Having the
policy also at the phone side is critical in SDN-like systems since it
allows for e�cient decision making by the Monitors, reduces the
bandwidth on the control channel and keeps the routers simple

and fast [49]. �is way, Monitors send only their per-�ow deci-
sion to the router instead of continuously sending all the mobile
OS-situation measurements. In the last case, the number of con-
trol messages in the HAN would exponentially increase while the
router would need to process all the measurements before making
a decision, with severe performance degradation.

Situation awareness on iOS. As mentioned earlier, the Monitor
is designed to �nd out which app is talking to an IoT device under
protection. Such information, however, is not directly given to a
non-system app on both iOS and Android. To tackle this we utilize
a new iOS capability that allows developers to proxy network tra�c.
Once this functionality is enabled by an app and approved by the
user, all network packets from all apps will traverse the network
stack and instead of being sent through the physical interface to
the remote destination, they end up in a virtual interface (tunnel).
�e tunnel will redirect those packets to the proxy app running the
VPN functionality.

iOS o�ers developers the capability to proxy network tra�c with
the NEVPNManager APIs). However, blindly tunneling apps’ tra�c
through the VPN is very expensive, o�en slowing down the mobile
system’s network performance by an order of magnitude. �is
work�ow is illustrated in Figure 4a: when an app makes a network
call this would entail, for every packet, a userspace-kernel context
switch, traversing the network stack, trapping the tra�c through
the tunnel interface and context-switching to userspace again to
deliver the network packets to the proxying app. �en the proxying
app needs to process the network headers (essentially performing
layer 3-4 translations) and then resending the packet.

Our solution is to utilize the VPN in a unique way: instead of
running the iOS Monitor to proxy the tra�c of all apps (through
the NEVPNManager APIs), which is expensive, requires a remote
VPN server and gives li�le information about the identity of the
app generating tra�c, our iOS Monitor uses the NEPacketTunnel
Provider APIs with a per-app VPN con�guration, to tunnel the
tra�c only from authorized apps (the o�cial apps of the IoT de-
vices), while leaving all other tra�c outside the tunnel to avoid
unnecessary delays. Furthermore, over the tunnel, our iOS Mon-
itor does not change the data: it merely acquires packet header
information and forwards the packet to its original destination.
A�er authenticating itself to the Controller module on the router
through TLS and its credentials, the Monitor informs the router
that the �ow in the tunnel is authorized. Other �ows towards the
IoT devices from the phone are by default considered illegitimate
and will all be dropped at the router. In this way, we can strike
a balance between the protection of legitimate IoT management
tra�c and the performance impact of the security control.

Situation awareness on Android. A straightforward way to cap-
ture tra�c from other apps on Android is to follow a similar process
with iOS and utilize the closely equivalent VPNService [6] API, in-
troduced in Android 4.0. However, the implementation of VPN on
Android is similar to the one in iOS and would entail similar over-
heads. To collect the situation information in a more lightweight
manner, HanGuard leverages side channels on Android an approach
which results in astounding performance bene�ts.

�e Android Monitor we implemented continuously looks at
the procfs �le system (see Figure 4b). procfs is a virtual �le

127

HanGuard: SDN-driven protection of smart home WiFi devices. WiSec ’17 , July 18-20, 2017, Boston, MA, USA

Managed	App Monitor	
NEPacketTunnelProvider	

User-space
Kernel

Transport Layer

Protocol Layer

Interface

TCP

IP

utun0 WiFiDrivers

Control Data

(a) iOS.

App Monitor

User-space
Kernel

/net/tcp Virtual
Filesystem

Transport Layer

Protocol Layer

TCP

IP

WiFiDrivers

/net/tcp6

Control Data

(b) Android.

Figure 4: Tra�c Monitoring Work�ow.

system which exposes the current status of an Android phone’s
kernel internal data structures. Particularly the �les proc/net/tcp,
proc/net/tcp6, proc/net/udp and proc/net/udp6 disclose the
ongoing TCP and UDP connections between the phone and a re-
mote destination, including the source/destination IP addresses of
the ongoing connection and its port numbers, the status of the
connection etc 4. �e addresses here can be either IPv4 and IPv6
(with the su�x “6”). �ese connections are also associated with a
speci�c UID that the Monitor can map to an installed app. To min-
imize operation overheads, the Monitor does not open and parse
a �le for each access. Instead it just checks the �le’s metadata
(i.e. the last modi�ed time or mtime in UNIX terms) to determine
whether the �le has been changed since the last visit. A complica-
tion here is that Android o�en �ts an IPv4 address into the IPv6
format before reporting it to the user. Such an address is auto-
matically captured by the Monitor and converted back to the IPv4
form. As an example, consider an app on a phone with an IPv4 ad-
dress 192.168.1.189 that connects to an IoT device with the address
192.168.1.32. During the app’s runtime, the connection may not
show up in proc/net/tcp but appears inside proc/net/tcp6 in-
stead with 0000000000000000FFFF 0000BD01A8C0 for the source
IP and 0000000000000000 FFFF0000200 1A8C0 for the destination.
It is clear that the IPv4 address is enclosed in the 32 least signi�cant
bits 5 and the 96 remaining bits are �xed. �e Monitor detects the
address from its �xed part and converts the rest to an IPv4 format
before communicating the app’s identity to the router through a
control message. Note that Android su�ers from the repackaged
apps problem [97]. To address this the Android Monitor uses a
package’s signature to verify apps claiming the identity of policy-
controlled apps.

3.3 Router-side Policy Enforcement
�e design of the controller module mainly focuses on synchroniz-
ing security policies across all the systems within the HAN and
enforcing these policies on the router, as illustrated in Figure 5.
More speci�cally, the module maintains a Master Policy Replica,
and runs a Policy Update Service responsible for updating the poli-
cies and distributing them across registered Monitors. Further, the
Controller module introduces a Per-Flow Decision Cache (PFDC) for
keeping the access decisions (on the app level) pushed by (or pulled

4Note that iOS does not reveal to an app the information about other processes through
its procfs �le system. Before iOS 9, one could use the system call sysctl to access
such information. �is channel has been closed since then.
5in li�le-endian order, presented using four-byte hexadecimals

Control
Packets

Userspace
Kernel

Incoming packets

Worker Thread

Policy Master
Replica

Policy Update Service

GC Service

Flow Table

Hanguard Userspace SSL

Packets for
Output

Figure 5: HanGuard Router Controller Module

from) theMonitors, and a Garbage Collection Service (GCS) for main-
taining the cache. It also hooks on the router’s packet �ow for the
policy enforcement. Due to space limitations, we omit discussion
of the policy synchronization and focus on the policy enforcement.
Receiving decisions. By default the router blocks all �ows to IoT
devices. As mentioned earlier, app-level access control on the router
relies on decisions made by the Monitor and delivered to the router
through the control channel. To e�ectively enforce such decisions
on a tra�c �ow, the Controller module is designed to e�ciently
authenticate and process the control messages to avoid holding up
the legitimate interactions with the target IoT device. Speci�cally,
the Controller module maintains TLS connections with theMonitors
through a userspace program. When a decision from a Monitor
arrives, a�er the successful TLS Monitor certi�cate validation, the
router checks the policy version and the sender user’s credentials,
and once these are also validated, it passes the decision’s �ow ID
(source IP and port, destination IP and port) to the kernel that
updates the PFDC using the �ow ID as the key to record the valida-
tion/invalidation decision on the �ow, which is then enforced by
the router. We highlight that data �ows are �rst checked against a
phone-level policy which ensures that the �ow comes from a valid
HAN phone.

Supporting this decision-making process requires an e�cient
userspace to kernel communication mechanism (for the router).
Although this can be achieved through system calls, ioctl calls
or procfs �les, these approaches are either complicated to imple-
ment or unable to handle asynchronous interactions. Our solution
employs the netlink socket IPC mechanism for the user-kernel
communication, which can be easily built (without changing the
kernel) and are asynchronous in nature: it queues incoming mes-
sages and noti�es the receiver through a handler callback. In our
implementation, the callback spawns a worker thread that processes
the message and updates the PFDC, either by inserting a valid �ow
or removing an invalid �ow.

�e PFDC is loaded at the router’s boot time from its persistent
storage. It holds the following information per-�ow: the �ow ID,
the �ow validation/invalidation �ag, the requesting app and the data
last seen time. �is cache is used for enforcing app-level policies
(whether a speci�c app is allowed to access a device), for the purpose
of enhancing the existing �ow-control capability of the router,
which cannot di�erentiate two �ows from the same IP and port but
produced by di�erent apps. By searching the cache, the router can
apply the app-level access decision upon the whole �ow, instead for
every individual packet, an advantage over deep packet inspection
and tra�c �ngerprinting techniques. To limit the amount of the

128

WiSec ’17 , July 18-20, 2017, Boston, MA, USA Demetriou et al.

resources the cache uses, a Garbage Collector Service (GCS) is run to
remove the obsolete records with the oldest data last seen time. To
prevent DoS a�acks where a Monitor a�empts to �ood the cache, a
per-phone limit is applied.
Enforcement. �e router enforces phone-level and app-level poli-
cies. For the former, it checks every packet to determine whether
it originates from a phone which is allowed to access a particular
IoT device. Phones and IoT devices are identi�ed based on their
MAC addresses. MAC-IP associations are statically de�ned during
a new device enrollment. For app-level policies, the router checks
the PFDC cache to determine whether the �ow is generated from
a valid app. A technical challenge in implementing the protection
is where to place the security control within the existing router
infrastructure. On a Linux-enabled system used by the router, once
a packet is received, it is put by the link layer into a backlog queue
from which the IP layer pulls packets for checksum checking and
routing decisions. If the packet is destined for the current machine,
it is passed to the transport layer. If not the packet is forwarded.
Apparently, the security control should happen on the IP layer (e.g.
in the ip forward() function). However, a packet might follow a
di�erent path within the kernel depending on whether the current
system is con�gured to run as a bridge or a router. For example,
in a bridge mode, no layer 3 operation is involved and as a result
the aforementioned function will never operate on the packet. Our
solution is to place the Controller hook in dev queue xmit(), a
generic driver function, ensuring that no packet bypasses the check.

To minimize the impact on �ows unrelated to the smart-home de-
vices, the HanGuard-enhanced router quickly inspects each packet
it receives to determine whether further a�ention is needed. Specif-
ically, a TCP �ow is considered interesting if its destination MAC
address is associated with an enrolled IoT device. Packets not ��ing
this description are forwarded without a delay, and others are �rst
handled according to the phone-level policy (whether the phone
can access the IoT device) stored at the router, and then the app-
level policy (whether the app can do that) which is based upon the
validation �ag set by the Monitor. For the packet allowed to go
through, its �ow’s last seen time is updated to the packet’s arrival
time. HanGuard helps its users detect and react to spurious access
a�empts with its noti�cation mechanism: HanGuard (1) keeps a log,
and (2) sends out-of-band noti�cations to the admin user when a
violation or tampering of the policy is a�empted.
Flow Termination. A determined adversary could a�empt to ex-
ploit the fact that a �ow from a co-located app is allowed. For
example, it could wait for the benign app to release its port and
a�empt to send a packet before the Monitor informs the router
to invalidate the �ow. For TCP �ows, the router prevents such
a�acks: it proactively invalidates a validated TCP �ow, when it sees
its corresponding TCP FIN packet and then handles the session
termination. For UDP, the situation is more complex. UDP is an
unreliable protocol with no clear indications of a session estab-
lishment/termination. HanGuard can be con�gured to handle UDP
�ows in two ways: (a) in a STOP-AND-WAIT mode, for every packet,
it pulls a decision from its Monitor. If between the time the packet
is received by the router and the decision request is received by the
Monitor, no other app on the same device a�empted to send a UDP
packet to the same target IoT device, then and only then the packet

is allowed. �is is a security stringent policy that prevents the
a�ack. However, it comes with performance penalties since every
packet is delayed approximately by one RTT. (b) In the DETECTION
mode, the Monitor pushes a �ow invalidation decision when the
benign app releases the port. In this case, a malicious UDP packet
from an Android app could make it through before the decision
is enforced. However, the Monitor will (a) detect the malicious
a�empt; (b) can determine the o�ending app and; (c) can deter-
mine the a�ected device (destination). Once a violation is detected
the user is noti�ed to verify the status of the a�ected device and
uninstall the o�ending app which is also blacklisted in the policy.
On iOS such race a�acks are always prevented: o�ending tunelled
tra�c is blocked on the phone whereas non-tunneled tra�c to IoT
devices is blocked at the router.

4 EMPIRICAL EVALUATION
We implemented a prototype of HanGuard—in DETECT mode for
UDP (Section 3.3)—on top of a TP-Link WDR4300v1 router with
a Gb NIC and a wireless network at the 2.4 GHz band (300Mbps)
running OpenWRT Chaos Chalmer with a Linux 4.1.16 kernel, and
also Nexus phones running Android 5 (Lollipop) and an iPhone 4S
running iOS 9. Our work answers the following research questions:

• RQ1: Is HanGuard e�ective in thwarting a�acks from malicious
applications?

• RQ2: What is the performance impact and resource consumption
of the Monitors on the phone side?

• RQ3: What is the overall overhead of HanGuard?

4.1 E�ectiveness
To answer RQ1 and verify HanGuard’s backward compatibility and
practicality, we repeated our a�acks on real world smart-home
devices (listed in Table 1). We performed the following two experi-
ments: (A) �rst we set up the target IoT devices over the “Vanilla”
system (without HanGuard components), and further installed a
repackaged version of their legitimate app on the phone to mimic
the adversary; (B) next, we updated the router with HanGuard-
enhanced �rmware, and also put our Monitor app on the same
phone with a policy that allows the phone and the benign app
to access the target IoT device. Under this protected se�ing, we
repeated experiment (A), using the phone with the Monitor app to
set up the IoT devices. As expected, both the original app and the
repackaged one could access the devices in the Vanilla system. With
HanGuard enabled, only the o�cial apps on the phone running the
Monitor app could communicate with their respective IoT devices ,
which con�rms the e�ectiveness of the access control enforced by
HanGuard and its backward compatibility (see [7] for demos).

4.2 Phone-side Performance

Monitoring cost on Android. On Android, the Monitor contin-
uously polls the procfs �le system to detect ongoing network
connections. Here we report our study on two monitoring strate-
gies and their performance impacts. Speci�cally, we con�gured the
Android Monitor on a Nexus phone to inspect the procfs �le sys-
tem in di�erent granularity (every 5ms, 10ms, 20ms, 30ms, 100ms).

129

HanGuard: SDN-driven protection of smart home WiFi devices. WiSec ’17 , July 18-20, 2017, Boston, MA, USA

5 10 20 30 100
Schedule Interval (ms)

0
10
20
30
40
50
60
70
80
90

100

E
ff
e
ct

iv
e
 I
n
te

rv
a
l (

m
s) Monitor (Simple)

Monitor (Smarter)

(a) Polling scheduled frequency vs
Actual polling frequency onAndroid.

1 2 3 4 5
Schedule Interval (ms)

102

103

104

105

F
ile

 L
in

e
s

R
e

a
d

Monitor (Simple)
Monitor (Smarter)

(b) File lines parsed for di�erent An-
droid Monitor con�gurations.

AVG
 (s

ca
nn

in
g)

G
m

ai
l

M
on

ito
r (

Sim
pl
e)

M
on

ito
r (

Sm
ar

te
r)

0

200

400

600

800

B
a
tt
e
ry

 P
o
w

e
r

(m
W

)

(c) Battery Power on Android.

AVG
 (s

ca
nn

in
g)

G
m

ai
l

M
on

ito
r (

Sim
pl
e)

M
on

ito
r (

Sm
ar

te
r)

* Y
ou

tu
be

* M
on

ito
r (

TC
P)

* M
on

ito
r(U

D
P)

0

10

20

30

40

50

C
P

U
 L

o
a
d
 (

%
)

(d) CPU Load on Android and iOS(*).

Figure 6: Monitoring Costs.

A�er running for 30 seconds, theMonitor went through every single
�le line to check the presence of interesting network connections,
a strategy called the Naive mode. �e approach was compared with
another strategy, called the Smarter mode, which �rst looked at
the last modi�ed time of a �le before accessing its content. �e
outcomes of the study are illustrated in Figure 6a. As we can see,
the Smarter strategy clearly can poll at a �ner granularity (5 ms),
given that it reads much fewer �le lines compared with the Naive
approach (Figure 6b), which is translated to less work per iteration
in the common case.

We further looked into the resource consumption of theMonitor.
For this purpose, we con�gured the Monitor to poll at 10 ms and
recorded its CPU and ba�ery consumption for both the Naive and
Smarter mode. On the same Nexus 5 phone, we also ran Trepn [68]
by�alcomm to collect the baseline power pro�le of the phone for
30 seconds before running ourMonitor app for 2 minutes. Figure 6c
illustrates the average ba�ery consumption that can be a�ributed
to the Monitor, and Figure 6d shows the average CPU usage (�rst
4 bars). To put things into perspective, we compared our Monitor
with a popular Antivirus app in scanning mode and the de facto
mailing app on Android (Gmail). As we can see from the �gures,
the power consumption of the naive approach is comparable to an
antivirus app performing an expensive operation while the smarter
mode’s is comparable with Gmail which is optimized to always run
in the background.

Monitoring cost on iOS. To evaluate the iOS Monitor’s resource
consumption, we used Instruments [9], a performance analysis and
testing tool which is part of the o�cial Apple IDE (Xcode [10]).
Figure 6d depicts the % CPU utilization that can be a�ributed to a
runtime process, where measurements on iOS are indicated with
* (last 3 bars): the Monitor when proxying a TCP app that sends
500 messages with payload size equal to one character; the Monitor
when proxying an equivalent UDP app; and YouTube while stream-
ing a video con�gured to auto-select its quality. �e �gure re�ects
the fact that the iOSMonitor does a lot of work when proxying TCP
tra�c: this is expected as TCP is a connection oriented protocol and
the Monitor needs to guarantee reliable delivery of the packets. For
UDP theMonitor does very li�le work. In idle mode (not proxying),
theMonitor incurred no CPU overhead. Instruments can also report
the Energy Use Level of an app at runtime as a value from 0 to 20.
In all experiments the reported value was consistently 0/20.

10 30 100 150 iOS
Schedule Interval (ms)

0

0.2

0.4

0.6

0.8

1

D
e
te

ct
io

n
 R

a
te

TCP
UDP

Figure 7: TCP and UDP�ow detection accuracy for di�erent
AndroidMonitor con�gurations and for the iOSMonitor.
Detection accuracy. �eMonitor’s goal is to detect an interesting
�ow generated on the phone. For iOS the detection accuracy is
100% since all packets from interesting apps are routed through the
Monitor’s VPN. For the Android Monitor though, the situation is
more complicated. For example, an interesting app might quickly
set up a socket, send a packet and then close the connection. �e
Android Monitor’s detection accuracy depends on whether it can
catch such events given its polling interval. To answer this question
we created a micro-benchmark that includes a TCP and a UDP app
connecting to a TCP and UDP echo server respectively. �ey both
stop the communication once the server response is received. Again,
we ran the Monitor in the Smarter mode 10 times for each of the
following polling con�gurations: 150ms, 100ms, 30ms and 10ms.
We found (see Figure 7) that the 10ms con�guration could always
detect outgoing TCP and UDP connections.

4.3 Communication Overhead
To answer RQ3, we assess the overall performance overhead of
HanGuard, as this can be observed from a mobile app. We cre-
ated a baseline by performing our experiments below on the un-
modi�ed system (Vanilla). To evaluate HanGuard communication
overheads we repeated the experiments on HanGuard with the re-
spective benchmark app being either policy-protected (Managed)
or not protected (Unmanaged).

Application latency. We ran the TCP and UDP apps individually,
con�gured to send 100 messages each. Figure 8a depicts the mean
latency in milliseconds (ms) for a TCP message and a UDP message
for Android. �e latency is measured as round trip time (RTT)
on the mobile app. In particular we measured the time interval
between the API call to send the message and the time that the
message is returned by the server and delivered to the application
layer. As we can observe, HanGuard introduces negligible latency
for Managed apps on Android.

130

WiSec ’17 , July 18-20, 2017, Boston, MA, USA Demetriou et al.

TCP UDP

M
e
ss

a
g
e
 R

T
T

 (
m

s)

1

2

3

4

5

6

7

8

9
VANILLA

UNMANAGED

MANAGED

(a) Android.
TCP UDP

M
e

ss
a

g
e

 R
T

T
 (

m
s)

101

102

(b) iOS.

Figure 8: Application-level communication latency.

VANILLA UNMANAGED MANAGED

T
h
ro

u
g
h
p
u
t
(M

b
p
s)

39

40

41

42

43

44

45

46

(a) Android.
VANILLA UNMANAGED MANAGED

T
h
ro

u
g
h
p
u
t
(M

b
p
s)

6

8

10

12

14

16

18

20

(b) iOS.

Figure 9: Application-level throughput (TCP).

In Figure 8b we can see that there is a big increase on TCP packet
latency for the Managed apps on iOS. Nevertheless, in practice this
is o�en tolerable, since most devices are actuators and sensors that
create mice �ows delivering a small amount of information: for ex-
ample, it is completely imperceptible when the delay for switching
a light grows from a few milliseconds to tens of milliseconds. �is
Figure also reveals an important bene�t of our design: the security
controls have negligible impact on Unmanaged apps, on both Android
and iOS devices, for both UDP and TCP.

Application throughput. To measure HanGuard’s throughput
overhead, we use our benchmark apps to transmit a �le of 20MB to
their server counterparts. We repeated the experiment 10 times. Fig-
ure 9 plots the throughput CDF for Android and iOS (*). Evidently,
HanGuard has negligible impact on throughput for all Android apps
and iOS unmanaged apps. Our evaluation also reveals an inter-
esting case: throughput drops signi�cantly—but only—for the iOS
Managed apps 6. �is happens because the iOS Monitor implemen-
tation uses the built in VPN utility of the OS.�us, it has to inspect
every packet for managed apps (see Figure 4a). �is is a security,
performance trade-o� we had to address. We opted-in for security.

5 RELATEDWORK

IoT attacks. Recent works demonstrated a�acks on IoT devices [26,
63, 75, 76, 82, 96]. Fernandes et.al. found vulnerabilities on Smart-
�ings’ applications [26]. �eir work focuses on a speci�c IoT hub
that can integrate third-party IoT devices, whereas HanGuard is
applicable to an infrastructure that exists in almost all households
with IoT devices. [63, 82], revealed vulnerabilities on smart-home
devices. However they consider an adversary on a separate device.
[75] considers an intricate mobile adversary which colludes with
6In practice this will only a�ect real-time streaming services o�ered by such app-device
connections. Actuators and sensors will not exhibit a noticeable e�ect.

a cloud. We illustrate that the mobile adversary can succeed with
minimal e�ort. All reported a�acks further motivate the need for
practical smart-home defenses.

Android side-channels and network monitors. Several works
focused on acquiring information for other processes using side-
channels on Android [42, 96, 98, 100]. [96] also utilized side channel
information for defence purposes. [50] used the VPN service on
Android for passive monitoring of mobile apps to collect user tra�c
information for analysis. However, it redirects all packets to a
server that further routes the packets. �is raises privacy concerns
which we avoid by implementing the routing functionality locally.

Access control. �ere have been various works on home access
control which we classify in three major areas: surveys [25, 31, 90];
access control systems [5, 23, 27, 47, 51, 76]; and user studies for
usable policy speci�cations [48, 54]. More relevant to our work is
the second. Nonetheless, most of these systems assume a clean-
slate design where the OSes of participating nodes can be modi�ed.
Our solution is backward compatible: it requires just a so�ware
upgrade on the Home’s router and downloading an app on the
phone. Other work focused on access control enforced on the
mobile phones [16, 24, 77]. Demetriou et. al. [24] enforced local
policies to control access to personal devices while our target is to
enforce a distributed policy on shared devices.

IDS and Firewalls. Work on intrusion detection systems (IDS),
personal and application �rewalls [8, 19, 21, 44], focuses either
solely at the host or at a network node, or only at the network layer.
HanGuard is distributed, consolidating application level semantics
from hosts, and network level information from the network node.
Furthermore, we do not require experts to set up policies.

6 CONCLUSION
In this work we presented HanGuard, a system that can enforce ac-
cess control policies in a HAN among user phones and IoT devices.
HanGuard uses a new SDN approach applied on HAN: it employs sit-
uation awareness on users’ phones through a userspaceMonitor app
that detects whether an authorized app is establishing a network
�ow with a target IoT device; Monitors push decisions to the HAN
router bridging the gap between network and application-level
semantics. �is technique allows the router to enforce �ne-grained
access control based on a global policy protecting access to HAN
IoT devices. HanGuard does not require mobile OSes modi�cations,
any IoT device modi�cations, or new router hardware. It is back-
ward compatible with the existing HAN infrastructure, and was
implemented and evaluated in a realistic HAN se�ing, verifying
both its practicality and e�ectiveness.

7 ACKNOWLEDGMENTS
University of Illinois authors were supported in part by NSF CNS
grants 12-23967, 13-30491, 14-08944, and 15-13939. Indiana Univer-
sity authors were supported in part by NSF CNS grants 1223477,
1223495, 1527141 and 1618493, andAROW911NF1610127. Demetriou
and Lee also thank Samsung Research America for supporting this
project during their internship. �e views expressed are those of
the authors only.

131

HanGuard: SDN-driven protection of smart home WiFi devices. WiSec ’17 , July 18-20, 2017, Boston, MA, USA

REFERENCES
[1] 2008. ARM Security Technology. Technical Report. ARM Limited.
[2] 2015. ARM Strategic Report. Technical Report. ARM Limited.
[3] 2015. Internet of things research study. Technical Report. Hewle�-Packard

Enterprise.
[4] 2015. iOS Security. Technical Report. Apple Inc.
[5] Gail-Joon Ahn, Hongxin Hu, and Jing Jin. 2008. Towards Role-Based Authoriza-

tion for OSGi Service Environments (FTDCS ’08).
[6] android.com. 2017. VpnService-Android Developers. h�p://goo.gl/0cKFyO.

(2017).
[7] Anonymous. 2017. Demo website. h�ps://goo.gl/dfYeop. (2017).
[8] G. Appenzeller, M. Roussopoulos, and M. Baker. 1999. User-friendly access

control for public network ports (INFOCOM ’99).
[9] apple.com. 2017. Instruments: iOS performance analysis tool. h�ps://goo.gl/

6XnAXF. (2017).
[10] apple.com. 2017. Xcode: Apple’s IDE. h�ps://goo.gl/TgMco6. (2017).
[11] Daniel Arp, Michael Spreitzenbarth, Malte Hubner, Hugo Gascon, and Konrad

Rieck. 2014. DREBIN: E�ective and Explainable Detection of Android Malware
in Your Pocket.. In NDSS.

[12] AhmedM. Azab, Peng Ning, Jitesh Shah,�an Chen, Rohan Bhutkar, Guruprasad
Ganesh, Jia Ma, and Wenbo Shen. 2014. Hypervision Across Worlds: Real-time
Kernel Protection from the ARM TrustZone Secure World (CCS ’14).

[13] belkin.com. 2017. Belkin Netcam. h�p://goo.gl/60d�g. (2017).
[14] belkin.com. 2017. WeMo Insight Switch. h�p://goo.gl/0WGDFe. (2017).
[15] belkin.com. 2017. WeMo Switch + Motion. h�ps://goo.gl/sjUsi3. (2017).
[16] Sven Bugiel, Stephen Heuser, and Ahmad-Reza Sadeghi. 2013. Flexible and

Fine-grained Mandatory Access Control on Android for Diverse Security and
Privacy Policies (USENIX Security 13).

[17] Jonathan M Carlson, David Heckerman, and Guy Shani. 2009. Estimating false
discovery rates for contingency tables. Microso� Res (2009).

[18] Eric Y Chen, Yutong Pei, Shuo Chen, Yuan Tian, Robert Kotcher, and Patrick
Tague. 2014. Oauth demysti�ed for mobile application developers. In CCS.

[19] William R. Cheswick and StevenM. Bellovin. 1994. Firewalls and Internet Security:
Repelling the Wily Hacker.

[20] Andrei Costin, Jonas Zaddach, Aurélien Francillon, and Davide Balzaro�i. 2014.
A large-scale analysis of the security of embedded �rmwares. InUSENIX Security.

[21] Manuel Cro�i, Maurizio Dusi, Francesco Gringoli, and Luca Salgarelli. 2007. Traf-
�c Classi�cation �rough Simple Statistical Fingerprinting. SIGCOMM Comput.
Commun. Rev. (2007).

[22] darkreading.com. 2011. Firms Slow To Secure Flaws In Embedded Devices.
h�p://goo.gl/b7Cl�. (2011).

[23] S.R. Das, S. Chita, N. Peterson, B. Shirazi, and M. Bhadkamkar. 2011. Home
automation and security for mobile devices (PERCOM Workshops ’11).

[24] Soteris Demetriou, Xiaoyong Zhou, Muhammad Naveed, Yeonjoon Lee, Kan
Yuan, XiaoFeng Wang, and Carl A. Gunter. 2015. What’s in Your Dongle and
Bank Account? Mandatory and Discretionary Protection of Android External
Resources. (NDSS ’15).

[25] Tamara Denning, Tadayoshi Kohno, and HenryM. Levy. 2013. Computer Security
and the Modern Home. Commun. ACM (2013).

[26] Earlence Fernandes, Jaeyeon Jung, and Atul Prakash. 2016. Security Analysis of
Emerging Smart Home Applications. In IEEE Symposium on Security and Privacy.

[27] Earlence Fernandes, Justin Paupore, Amir Rahmati, Daniel Simionato, Mauro
Conti, and Atul Prakash. 2016. FlowFence: Practical Data Protection for Emerging
IoT Application Frameworks. In USENIX Security Symposium.

[28] Ronald A Fisher. 1922. On the interpretation of � 2 from contingency tables,
and the calculation of P. Journal of the Royal Statistical Society (1922).

[29] Gartner. 2015. Gartner Says 6.4 Billion Connected “�ings” Will Be in Use in
2016, Up 30 Percent From 2015. h�p://goo.gl/L9ub�. (2015).

[30] github.com. 2017. Github: dex2jar. h�ps://goo.gl/Hwx2WX. (2017).
[31] C. Gomez and J. Paradells. 2010. Wireless home automation networks: A survey

of architectures and technologies. Communications Magazine, IEEE (2010).
[32] Dan Goodin. 2013. Welcome to the“Internet of �ings” where even lights aren’t

hacker safe2 more wireless baby monitors hacked: Hackers remotely spied on
babies and parents. h�p://goo.gl/l0qh05. (2013).

[33] google.com. 2017. OnHub - Google. h�ps://goo.gl/igIM5c. (2017).
[34] Michael Grace, Yajin Zhou, Qiang Zhang, Shihong Zou, and Xuxian Jiang. 2012.

RiskRanker: Scalable and Accurate Zero-day Android Malware Detection (Mo-
biSys ’12).

[35] tim Greene. 2014. Spike malware toolkit can infect Windows, Linux and ARM-
based Linux devices. h�p://goo.gl/KQgSyT. (2014).

[36] Kashmir Hill. 2015. �is guy’s light bulb performed a DoS a�ack on his entire
smart house. h�p://goo.gl/24skXK. (2015).

[37] honeywell.com. 2017. Honeywell. h�p://goo.gl/9yuiTX. (2017).
[38] ibabylabs.com. 2017. ibabylabs.com. h�ps://goo.gl/y6Gdzd. (2017).
[39] IDC. 2016. IDC: Smartphone OS Market Share. h�p://goo.gl/y1uN4Q. (2016).
[40] indianexpress.com. 2016. Android malware ’Godless’ has a�ected over 8.5 lakh

devices globally. h�p://goo.gl/RE5�K. (2016).

[41] in�nit.dk. 2012. Nabto. h�p://goo.gl/ApJo1G. (2012).
[42] Suman Jana and Vitaly Shmatikov. 2012. Memento: Learning Secrets from

Process Footprints. (SP ’12).
[43] J.M Jorup. 2016. “Internet of�ings” security is hilariously broken and ge�ing

worse. h�p://goo.gl/PZgKN9. (2016).
[44] P. Judge and M. Ammar. 2002. Gothic: a group access control architecture for

secure multicast and anycast (INFOCOM ’02).
[45] Isaac Kelly. 2012. Hacking the WeMo WiFi switch Part 1. h�ps://goo.gl/PKeO1A.

(2012).
[46] Insoon Kim. 2015. Is CCTV A Spy? Backdoor �at Was Secretly Hidden In

Chinese Products Were Found. h�p://goo.gl/3xQ7Dy. (2015).
[47] Ji Eun Kim, G. Boulos, J. Yackovich, T. Barth, C. Beckel, and D. Mosse. 2012.

Seamless Integration of Heterogeneous Devices and Access Control in Smart
Homes (IE ’12).

[48] Ti�any Hyun-Jin Kim, Lujo Bauer, James Newsome, Adrian Perrig, and Jesse
Walker. 2010. Challenges in Access Right Assignment for Secure Home Networks
(HotSec’10).

[49] D. Kreutz, F.M.V. Ramos, P. Esteves Verissimo, C. Esteve Rothenberg, S. Azodol-
molky, and S. Uhlig. 2015. So�ware-De�ned Networking: A Comprehensive
Survey. Proc. IEEE (2015).

[50] Anh Le, Janus Varmarken, Simon Langho�, Anastasia Shuba, Minas Gjoka, and
Athina Markopoulou. 2015. AntMonitor: A System for Monitoring from Mobile
Devices (SIGCOMM ’15).

[51] A. Lioy, A. Pastor, F. Risso, R. Sassu, and A.L. Shaw. 2014. O�oading security
applications into the network (eChallenges e-2014).

[52] Sharon Machlis. 2015. IoT’s dark side: Hundreds of unsecured devices open to
a�ack. h�p://goo.gl/pM9TNk. (2015).

[53] Claudio Marforio, Nikolaos Karapanos, Claudio Soriente, Kari Kostiainen, and
Srdjan Capkun. 2014. Smartphones as Practical and Secure Location Veri�cation
Tokens for Payments. In NDSS ’14.

[54] Michelle L. Mazurek, J. P. Arsenault, Joanna Bresee, Nitin Gupta, Iulia Ion,
Christina Johns, Daniel Lee, Yuan Liang, Jenny Olsen, Brandon Salmon, Richard
Shay, Kami Vaniea, Lujo Bauer, Lorrie Faith Cranor, Gregory R. Ganger, and
Michael K. Reiter. 2010. Access Control for Home Data Sharing: A�itudes, Needs
and Practices (CHI ’10).

[55] mcafee.com. 2013. Mobile Malware -�e Rise Continues. h�p://goo.gl/3f1LP8.
(2013).

[56] microso�.com. 2017. Azure IoT Hub - Microso� Azure. h�ps://goo.gl/RYZTGC.
(2017).

[57] myn3rd.com. 2017. My N3rd: CONNECT AND CONTROL ANYTHING FROM
ANYWHERE. h�p://goo.gl/8gpa0D. (2017).

[58] nabto.com. 2015. Nabto IoT Platform Speci�cations. h�ps://goo.gl/SekiZV.
(2015).

[59] Muhammad Naveed, Xiao-yong Zhou, Soteris Demetriou, XiaoFeng Wang, and
Carl A Gunter. 2014. Inside Job: Understanding and Mitigating the �reat of
External Device Mis-Binding on Android.. In NDSS.

[60] nest.com. 2017. Nest Protect. h�ps://goo.gl/jM8ALk. (2017).
[61] nest.com. 2017. Nest�ermostat. h�ps://goo.gl/oSIFfQ. (2017).
[62] Ma�e Noble. 2013. WeMo Hacking. h�p://goo.gl/C97vKv. (2013).
[63] Sukhvir Notra, Muhammad Siddiqi, Hassan H. Gharakheili, Vijay Sivaraman,

and Roksana Boreli. 2014. An Experimental Study of Security and Privacy Risks
with Emerging Household Appliances (M2MSec ’14).

[64] Pierluigi Paganini. 2013. Internet of �ings - Symantec has discovered a new
Linux worm. h�p://goo.gl/DwPGnM. (2013).

[65] Danny Palmer. 2016. �is Android malware has infected 85 million devices and
makes its creators 300,000 a month. h�p://goo.gl/4YbaWg. (2016).

[66] Sue Marque�e Poremba. 2016. Studies Show Rise of the Mobile Malware �reat.
h�p://goo.gl/VfUKB4. (2016).

[67] Jacob Poushter. 2016. Smartphone Ownership and Internet Usage Continues to
Climb in Emerging Economies. Pew Research Center: Global A�itudes & Trends
(2016).

[68] qualcomm.com. 2017. Trepn Power Pro�ler. h�ps://goo.gl/KGrswV. (2017).
[69] Juha Saarinen. 2014. Vendors slow to patch OpenSSL vulnerabilities. h�p:

//goo.gl/9EFXAT. (2014).
[70] samsung.com. 2017. Samsung Family Hub Refrigerator. h�p://goo.gl/ddwlxb.

(2017).
[71] securityfocus.com. 2013. Belkin WiFi NetCam video stream backdoor with

unchangeable admin/admin credentials. h�p://goo.gl/XnmwAk. (2013).
[72] securityintelligence.com. 2015. 2015 Mobile �reat Report - �e Rise of Mobile

Malware. h�ps://goo.gl/lhZ1yb. (2015).
[73] Sergey Shekyan and Artem Hartutyunyan. 2013. Watching the watchers:hacking

wireless IP security cameras. In HITB.
[74] shodan.io. 2017. Shodan. h�ps://goo.gl/vUL10K. (2017).
[75] Vijay Sivaraman, Dominic Chan, Dylan Earl, and Roksana Boreli. 2016. Smart-

Phones A�acking Smart-Homes (WiSec ’16).
[76] Vijay Sivaraman, Hassan Habibi Gharakheili, Arun Vishwanath, Roksana Boreli,

and Olivier Mehani. 2015. Network-level security and privacy control for smart-
home IoT devices (WiMob ’15).

132

WiSec ’17 , July 18-20, 2017, Boston, MA, USA Demetriou et al.

[77] Stephen Smalley and Robert Craig. 2013. Security Enhanced (SE) Android:
Bringing Flexible MAC to Android. (NDSS ’13).

[78] Stephen Smalley and Robert Craig. 2013. Security Enhanced (SE) Android:
Bringing Flexible MAC to Android (NDSS ’13).

[79] Ms. Smith. 2013. Eavesdropping made easy: Remote spying with WeMo Baby
and an iPhone. h�p://goo.gl/OUxdUy. (2013).

[80] Ms. Smith. 2014. 500,000 Belkin WeMo users could be hacked; CERT issues
advisory. h�p://goo.gl/HBN9HB. (2014).

[81] Howard Solomon. 2016. Mobile malware, unpatched Android devices are in-
creasing problems say studies. h�p://goo.gl/EUGmDC. (2016).

[82] Mark Stanislav and Tod Beardsley. 2015. HACKING IoT: A Case Study on Baby
Monitor Exposures and Vulnerabilities. h�ps://goo.gl/Uh7y4e. (2015).

[83] statista.com. 2016. Number of apps available in leading app stores as of June
2016. h�p://goo.gl/LO6umz. (2016).

[84] statista.com. 2017. Android version market share distribution among smartphone
owners as of September 2016. h�p://goo.gl/vMm2t2. (2017).

[85] Darlene Storm. 2015. 2 more wireless baby monitors hacked: Hackers remotely
spied on babies and parents. h�p://goo.gl/UIbWvA. (2015).

[86] Darlene Storm. 2015. Eerie music coming from wireless baby cam; is it a haunt-
ing? No, it’s a hacker. h�p://goo.gl/49Larp. (2015).

[87] He Sun, Kun Sun, Yuewu Wang, Jiwu Jing, and Sushil Jajodia. 2014. TrustDump:
Reliable Memory Acquisition on Smartphones (ESORICS ’14).

[88] theverge.com. 2012. Square updates its credit card reader to include hardware
encryption. h�p://goo.gl/G0Vji7. (2012).

[89] throughtek.com. 2015. Kalay Platform. h�p://goo.gl/t9oGM3. (2015).
[90] Blase Ur, Jaeyeon Jung, and Stuart Schechter. 2013. �e Current State of Access

Control for Smart Devices in Homes (HUPS ’13).
[91] weaved.com. 2015. Weaved Remote Connections. h�ps://goo.gl/elBwS3. (2015).
[92] Fengguo Wei, Sankardas Roy, Xinming Ou, and others. 2014. Amandroid: A

precise and general inter-component data �ow analysis framework for security
ve�ing of android apps. In CCS.

[93] Johannes Winter. 2008. Trusted computing building blocks for embedded linux-
based ARM trustzone platforms. In STC ’08.

[94] RyszardWiniewski and Tumbleson. 2017. A tool for reverse engineering Android
apk �les. h�p://goo.gl/26AzzN. (2017).

[95] yahoo.com. 2014. Proofpoint Uncovers Internet of �ings (IoT) Cybera�ack.
h�p://goo.gl/GBqies. (2014).

[96] Nan Zhang, Kan Yuan, Muhammad Naveed, Xiaoyong Zhou, and XiaoFeng
Wang. 2015. Leave Me Alone: App-Level Protection against Runtime Information
Gathering on Android. (IEEE Symposium on Security and Privacy).

[97] Wu Zhou, Yajin Zhou, Xuxian Jiang, and Peng Ning. 2012. Detecting Repackaged
Smartphone Applications in �ird-party Android Marketplaces (CODASPY ’12).

[98] Xiaoyong Zhou, Soteris Demetriou, Dongjing He, Muhammad Naveed, Xiaorui
Pan, XiaoFeng Wang, Carl A. Gunter, and Klara Nahrstedt. 2013. Identity, Loca-
tion, Disease and More: Inferring Your Secrets from Android Public Resources
(CCS ’13).

[99] Yajin Zhou and Xuxian Jiang. 2012. Dissecting Android Malware: Characteriza-
tion and Evolution (SP).

[100] Yajin Zhou and Xuxian Jiang. 2013. Detecting Passive Content Leaks and
Pollution in Android Applications (NDSS ’13).

A BEYOND THE APP-LEVEL ADVERSARY

Access from unauthorized authenticated guest phone. Con-
sider the following cases: (a) a guest phone’s role is only allowed
to access the unprotected domain. If the target IoT device’s type
is in another domain, the router will reject the o�ending packets.
(b) A guest phone might claim the identity of one of the HAN’s
Monitors. However, HanGuard uses static IPs which are asso-
ciated with phones/devices MAC addresses during setup by
the admin role. Any a�empt to claim a reserved IP (arp-spoo�ng)
or MAC address (MAC-spoo�ng) is validated through the control
channel. �e guest phone will fail the validation, the admin user is
noti�ed out-of-band and the culprit is removed form the network.

Compromised HAN user phones. Preventing phone compro-
mises is out of the scope of this work since other solutions already
exist and even deployed on commodity smartphones [1, 4, 12, 53,
87, 93]. For example, SELinux for Android [78] uses mandatory
access control to ensure that even compromised system processes
are restricted, and is deployed on all Android phones with version

4.4. and higher (more than 60% in 2015 [84]). Most Android phones
are equipped with ARM processors [2] with TrustZone [1] which
can be utilized for solutions stemming from the trusted computing
domain. TZ-RKP [12] is a real-time kernel protection technique
deployed on Samsung Galaxy phones that ensures the kernel in-
tegrity using the ARM TrustZone secure world. iOS devices have
the Secure Enclave, a secure co-processor that is used to guaran-
tee secure boot [4]. However, even if a phone is compromised,
HanGuard can guarantee phone-level protection. We illustrate this
with the following examples:

(a) An unauthorized phone might a�empt to access an IoT device.
Assuming it acquires the user credentials and the Monitor certi�-
cate, it can try to push a rule to the router to allow its �ow. However,
the router detects that the rule comes from a device whose role is
not allowed to access the type of the target device and rejects the
rule. (b) �e phone might a�empt to update the policy in its favor.
Such a�empts by a non-admin device—determined by the device
MAC:IP address pair, Monitor certi�cate, and the user credentials—
will be rejected. Even if the admin device and its user credentials
are compromised and an update is pushed, the admin user always
gets noti�ed out-of-band. �us she can revoke the update and take
action. (c) �e phone, might try to �ood the �ow decision cache.
�is would force the GCS service to retire older �ows, essentially
invalidating benign �ows and causing DoS. To tackle this, we rate
limit the �ows a particular device can create. If that limit is sur-
passed, the device is penalized by having the router dropping all
its packets for a few minutes. During that time, no �ow entries
will be added in the decision cache originating from that device. In
all cases, HanGuard triggers its out-of-band noti�cation mechanism
when it detects a violation.

WPA2-PSK authentication and HanGuard network partition.
On a typical WLAN node, once a subnetwork is created it can be
con�gured to use a Service Set Identi�er (SSID) and the WPA2-PSK
security protocol. WPA2-PSK derives a unique pairwise transient
key to encrypt the communication tra�c between individual nodes
on a HAN and the router. However, all keys are derived from the
same SSID and a secret passphrase shared across all the nodes.
As a result, a compromised phone could potentially use the key
to directly connect to an IoT device, bypassing the router-level
protection. To address this threat, HanGuard partitions the HAN
into two default subnetworks, each with their own SSID/passphrase
pair, one for user phones, PCs and laptops, and the other for IoT
devices. �is ensures that even a fully compromised phone cannot
acquire the secret key used by smart-home devices.

Remote adversary. Commonly, an IoT device behind the NAT
initiates a connection to its cloud, through which the cloud learns
the device’s external IP and port. If this information is exposed
to an adversary, she can gain unfe�ered access to the device [43,
52, 73, 74]. To mitigate this, HanGuard uses a port-restricted
cone NAT on the router, which ensures that only the �ows from
the remote IP:port pairs contacted before by a local device can
reach that device. Note that this NAT mode is supported by most
smart-home devices on the market [41, 58, 89, 91].

133

