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Abstract—An increasing number of depth sensors and
surrounding-aware cameras are being installed in the new
generation of cars. For example, Tesla Motors uses a forward
radar, a front-facing camera, and multiple ultrasonic sensors to
enable its Autopilot feature. Meanwhile, older or legacy cars are
expected to be around in volumes, for at least the next 10 to 15
years. Legacy car drivers rely on traditional GPS for navigation
services, whose accuracy varies 5 to 10 meters in a clear line-of-
sight and degrades up to 30 meters in a downtown environment.
At the same time, a sensor-rich car achieves better accuracy due
to high-end sensing capabilities. To bridge this gap, we propose
CoDrive, a system to provide a sensor-rich car’s accuracy to
a legacy car. We achieve this by correcting GPS errors of a
legacy car on an opportunistic encounter with a sensor-rich car.
CoDrive uses smartphone GPS of all participating cars, RGB-D
sensors of sensor-rich cars, and road boundaries of a traffic scene
to generate optimization constraints. Our algorithm collectively
reduces GPS errors, resulting in accurate reconstruction of a
traffic scene’s aerial view. CoDrive does not require stationary
landmarks or 3D maps. We empirically evaluate CoDrive which
is shown to achieve a 90% and a 30% reduction in cumulative
GPS error for legacy and sensor-rich cars respectively, while
preserving the shape of the traffic.

I. INTRODUCTION

Global positioning system (GPS) has revolutionized the
way people navigate. Nonetheless, despite an abundance of
GPS devices at our fingertips, navigation in urban canyons
and under heavy traffic remains challenging. Urban canyons
are challenging because GPS positioning is highly inaccurate.
Due to multipath interference, GPS accuracy in urban canyons
ranges between 30-50 meters [1], [2]. Similarly, heavy traffic is
challenging because current devices lack lane awareness. The
accuracy of 5-10 meters in a clear line-of-sight is insufficient
for lane-level guidance [3]. As a result, these conditions put
an additional cognitive burden on drivers, which often results
in wastage of time, fuel, and money, and sometimes accidents
and deaths [4], [5], [6]. The goal of this paper is to address
these problems, more-so in a futuristic scenario.

Recent developments suggest that the automobile industry
is taking a bold leap into connected vehicles and autonomous
driving. In fact, the growth of next-generation-car sales is
expected to be rapid, with an estimated 45% of cars on the
road by 2020 to be connected [7]. Moreover, various levels of
autonomy have been already announced, tested, or launched.
Such cars feature advanced sensing capabilities, including
multiples of range sensors (Lidar and Radar), 360° cam-
eras [8], onboard GPUs [9], and high-speed connectivity [10],

[11]. To enable seamless driving, these hardware capture and
process gigabytes of sensor data in real-time.
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Fig. 1: CoDrive example scenario
This work leverages the increasing presence of such hard-

ware in a rather contrary way, i.e., instead of helping a
sensor-equipped car in navigating better, we use it to im-
prove positioning of a legacy car. This intuition stems from
a well-established technique called simultaneous localization
and mapping (SLAM), where a robot resets its measurement
error using static landmarks and dead reckons between them
using on-board sensors. In our case, past works have shown
that it is possible to track vehicle dynamics (lane change
and turns) using inertial sensors and GPS of the smartphone
[12]. However, previous approaches make several impractical
assumptions which hinder their universal applicability.

Specifically, previous approaches assume that the start lo-
cation and lane position of the vehicle are known. Moreover
they assume that the vehicle always enters a road segment
from the right-most lane. In addition, sensor-based approaches,
ignore accumulation of long term dead-reckoning errors and
drift [2], [12]. Other previous works use a front-facing camera
to mitigate this issue; however, they require the camera-bearing
apparatus (e.g. a smartphone) to be mounted in a specific
manner [13], [14]. While both approaches are promising, for
them to work universally, a reliable mechanism is required to
periodically reset their estimation errors. By building CoDrive,
we enable such a mechanism. Similar to previous works,
CoDrive leverages GPS and inertial sensors of smartphones
in legacy cars for continuous tracking. In contrast with them,
CoDrive does not make any assumptions regarding a vehicle’s
initial positioning and/or orientation.

CoDrive achieves precise positioning whenever it encoun-
ters a sensor-rich car. Each subsequent encounter is then
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used to reset dead-reckoning errors and improve positioning
estimates. Figure 1 exemplifies CoDrive: whenever a sensor-
rich car detects a vehicle, it shares its own GPS coordinates,
the angle and distance of the observation and the visual
fingerprint of the detected vehicle with the nearest compute
node. The compute node leverages these measurements along
with the detected vehicle’s own estimation of location (e.g.
GPS measurement from the driver’s smartphone) to correct the
detected vehicle’s location. In this way, CoDrive leverages the
increasing presence of sensor-rich cars in urban environments
to eliminate the need for and the cost of deploying and
managing static landmarks for positioning corrections.

An interesting aspect of CoDrive is that it performs better
under dense environments than sparse. In dense traffic, higher
navigation accuracy is needed because lane switching becomes
challenging. A system which could assist in correct lane keep-
ing and generate advance alerts is highly desirable. Similarly,
in urban canyons (e.g. a downtown situation), traditional GPS
performs poorly due to high multipath errors (see Figure 2
for an example of the effect of GPS errors in downtown San
Francisco) and a mechanism is needed to reset them. CoDrive
offers both these features but it requires participation of at least
one sensor-rich car. It is not surprising that CoDrive performs
better with more participation. During early adoption—like
any crowd-sourcing approach—we believe this is indeed a
limitation, especially given that it does not offer consistent
accuracy guarantees. However, one should note that CoDrive
offers benefits where they are needed the most. Navigation
in sparse environments is easier, therefore accuracy beyond
traditional GPS does not hold substantial merit. On the other
hand, navigation in urban environments is challenging and
all enabling factors for CoDrive exist there. CoDrive is an
ideal fit for urban environments where there is higher accuracy
demand, traffic density, and more early technology adopters.

Fig. 2: GPS errors in San Francisco downtown while walking
on a straight line on Market St (2 trials).

Moreover, beyond precise positioning, CoDrive builds a
means of communication between the two different genera-
tions of cars. In CoDrive, vehicles communicate their sur-
rounding information to the closest edge computing node.
The edge node then performs matching over the received
visual, sensory, and coarse location cues. CoDrive’s main
contribution stems from its novel optimization framework,
which combines such information across different generations
of cars to generate improved positioning for each of them.
Given that CoDrive enables inter-car communication without
new infrastructure, it can be further utilized to convey other
information related to accidents, weather, or road conditions,
to the trailing vehicles in traffic. We believe this synergy

between the two generations is of great value with conspicuous
benefits in the years to come. Note that the average age of a
vehicle in the US is 11.5 years [15]. Therefore, in absence
of significant improvement cost, millions will lack advanced
features for at least a decade.

Our system CoDrive (collaborative driving) enables collab-
oration among cars and facilitates an open-car ecosystem. This
ecosystem is different from the existing, where a sensor-rich
car uses its hardware to improve its own location accuracy.
Naturally, for such an ecosystem to succeed, the benefits of
collaboration should be mutual. While benefits are apparent
for legacy car owners, the same might not be true for sensor-
rich car owners. CoDrive produces value for both kinds: in
a downtown scenario, we find CoDrive reduces the location
errors of legacy cars from an average of 49 meters to 4
meters, while also improving the accuracy of sensor-rich cars
by 3x. In case this incentive is proven inadequate for sensor-
rich car owners, the service-provider could turn to an Uber-
like business model, where sensor-rich car owners benefit
financially for sharing their sensor information. Given that
manufacturers would soon have fleets of sensor-rich cars on
the roads [16], [11], [8], [10], they could collect measurements
and utilize CoDrive to bootstrap a variety of driving assistance
applications. Finally, CoDrive can reconstruct the aerial view
of the traffic and enable fine-grained travel behavior.
Our contributions. We summarize our contributions below:
• The first system which uses the existing sensing capabilities
of cars as moving landmarks for correcting positioning errors.
• A novel optimization framework and inter-car communica-
tion technique for improving outdoor positioning of all partici-
pating cars, combining distance, angle, and visual information
in a unique way.
• A comprehensive system architecture, end-to-end implemen-
tation, and real-world evaluation with commodity hardware.

Paper Organization: In Section II, we provide an overview
and describe individual components of the system. Section III
presents our optimization technique for precise positioning
of cars and Section IV the evaluation of CoDrive.Section V
covers the related work and Section VI concludes the paper.

II. SYSTEM DESIGN

Approach: Our goal is to design an end-to-end system for
correcting GPS errors in urban environments. One could argue
that differential GPS (DGPS) could be appropriate in this case.
However, while DGPS can be accurate up to 10 cm, it has
two major disadvantages. Firstly, it performs poorly in urban
canyon environments: [2] found DGPS’s average error to be
75m which can degrade up to 200m. Secondly, it requires a
custom receiver to be installed on legacy cars. Alternatively,
vision-based methods can be used to reduce GPS errors, for
example by leveraging lane markers [13] or road-signs [14],
while others have used mobile sensing methods to detect
relative positioning, route turns, potholes, and stop-signs [17],
[18], [2]. Unfortunately, vision-based methods require a phone
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to be mounted in a specific way to ensure clear lane-view –
which is impractical. Moreover, a phone can only identify lane
markings of the closest lanes due to its narrow field-of-view
(typically < 54 degrees); identifying the lane position requires
a clear view of the entire road, which is not possible in a
dense traffic environment. On the other hand, sensing-based
methods do not scale because of (a) noise in inertial sen-
sors, and (b) significant pre-deployment effort (environment
wardriving requirements for identifying repeatable landmarks
(e.g., potholes), lanel-level digital maps, auxiliary equipment).
In our work we propose a solution which is appropriate for
urban environments, uses no special infrastructure in legacy
cars other than a driver’s smartphone, makes no assumptions
regarding the placement of the smartphone in a vehicle, and
does not require laborious and costly pre-deployment effort.

Our system, CoDrive, is an outdoor vehicle positioning
system which leverages combined sensing capabilities of
sensor-rich and legacy cars to correct estimation errors. In
particular, on an opportunistic encounter, measurements (color,
depth, and location) from the sensor-rich car(s) and GPS
location of the legacy car(s) are streamed to the CoDrive
edge computing node. The edge node uses a novel location
optimization framework (Section III) which transforms raw
observations into constraints of an optimization problem. A
solution of this problem results in accurate positioning of
all participating cars. The corrected locations are streamed
back to the participating cars which use it to reset their
positioning errors. CoDrive’s system architecture comprises
of three modules: a cloudlet residing in sensor-rich cars, an
edge node at cell tower base stations, and a smartphone inside
legacy cars. Next, we discuss different trade-offs and the
rationale behind our design decisions.

System Design Rationale: Various metrics such as accuracy,
latency, and bandwidth play an important role when designing
a networked system. These metrics influence the location of
computation: the cloudlet, the edge, or the cloud. In our
case, a sensor-rich car can generate gigabytes of visual data
every second. However, due to limited upload bandwidth,
offloading entire data to the edge or the cloud is not possible.
Therefore, CoDrive processes visual data on the cloudlet and
only offloads the inferences. CoDrive location optimization
requires inferences from all participating cars to be co-located.
Therefore, the computation can be performed either at the edge
or the cloud. CoDrive uses the edge due to smaller round-
trip latencyand lower monetary cost. The round-trip latency
between a car and the edge is typically small compared to
the cloud. This is because of geographic proximity of the
edge (single-hop) over the cloud (multi-hop). More benefits of
edge computing over the cloud are documented here [19]. We
also decided not to focus on vehicle-to-vehicle communication
(V2V) due to privacy challenges, long connection setup times,
fleeting opportunity between vehicle encounters, and because
all vehicles will be required to integrate special equipment.

Figure 3 shows various components of our system. The
cloudlet acquires data from various sensors and processes

Legacy carSensor-rich car

Edge Node 
(base station)

Cloudlet

Cloud

- Visual fingerprints of 
other cars

- Distances/angle
- Coarse GPS

Precise Location

- Coarse GPS
- Self fingerprint (one-time)

- Visual feature matching
- Location optimization

- Data acquisition 
- Car detection/point-cloud 

processing

Insights across 
different base-stations

Dead-reckoning

Precise Location

Fig. 3: CoDrive Architecture

them locally. The processing includes car detection and vi-
sual fingerprinting; overlaying depth pointcloud on RGB and;
distance/angle estimation for each car. The visual fingerprints,
distance/angle, and GPS reading are then uploaded to the edge
node. The edge node first correlates visual fingerprints with
all participating cars in the area. Then it runs the location op-
timization resulting in precise positioning for both the sensor-
rich and the legacy cars. The cars then reset their positioning
based on the newly received information and locally track
vehicle dynamics such as turns and lane changes—on legacy
cars this is performed on the driver’s smartphone.

One of the primary challenges in our work is getting access
to a programmable sensor-rich car. Since this was infeasible,
we imitate one by mounting sensor hardware on a legacy car.
We experiment with various mount designs, several cameras,
an array of circularly mounted IR/acoustics range finders, low-
cost servo motor based spinning range-finders etc. However,
the lack of real-time streaming from cameras, inaccuracies in
IR/acoustics distance measurements, and wind friction led us
to our converged setup based on circularly mounted phones
and a Velodyne lidar at their center (Figure 4).

Fig. 4: Sensor-rich car used in our experiments

Computation in the Cloudlet: CoDrive leverages the follow-
ing information from a sensor-rich car: (a) 3D pointcloud, (b)
360� images, and (c) GPS locations. In the next subsections,
we elaborate on the components of the CoDrive cloudlet
pipeline and how they are used to infer a better location.

A sensor-rich car should be able to detect cars in a road
scene. With our measurement kit mounted on a legacy car
(mimicking sensor-rich car behavior), we experiment around
our institution. For simplicity, acquired sensor data is stored
in the cloudlet and processed later. Our pipeline to pro-
cess acquired data consists of several image and point-cloud

IEEE INFOCOM 2018 - IEEE Conference on Computer Communications

74
Authorized licensed use limited to: Imperial College London. Downloaded on November 24,2023 at 15:13:35 UTC from IEEE Xplore.  Restrictions apply. 



Metric

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

C
D

F

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1
Precision

Recall

Fig. 5: Car detection accuracy on the kitti dataset

processing modules. We first extract cars from the stream
of video frames – equivalent to the object-localization in
computer vision. CoDrive requires extremely high accuracy
and robustness across different view-points. To this end, our
natural choice is to use neural networks. Neural networks
(a.k.a. deep learning) have made tremendous progress in recent
years – outperforming most feature-based detection methods.
We use Faster-RCNN [20] implemented on CAFFE [21] to
identify cars in a scene. However to improve the object-
localization speed and achieve real-time performance, we
make two enhancements in the object-localization pipeline.
(a) Instead of performing object-localization on every frame,
we use object-tracking between every nth frame [22] . We do
this because object-localization per frame is slow and takes
about 250 � 300 ms, while the video streams are typically
recorded at 30 frames per second. (b) We train a custom deep
neural network on the Stanford car dataset [23]; this network
is specifically designed to detect cars at higher accuracy and
speed across diverse view-points. Our single-class custom
trained object-localizer performs substantially better in speed
and robustness over the out-of-the-box pre-trained models.

Figure 5 shows the accuracy of car detection on the kitti
dataset [24]. This dataset is different from the one used in
training and it contains scenes with multiple cars in them.
The dataset contains a total of 7481 images. Each data point
in the graph represents a precision/recall value for an image.
We define precision as the fraction of correctly identified cars
over the total identified cars. Not surprisingly, deep-learning
achieves near-perfect precision in the median case. Similarly,
recall is the fraction of correctly identified cars over the total
number of cars in a scene. We achieve > 50% recall in the
median case. While this may appear unimpressive, it is not
a bottleneck in our system's functioning. We inspected poor
recall cases closely and found that deep-learning identifies all
cars in the direct view correctly. Most unidentified cases are
due to heavy occlusions and far distance—could be missed
out by lidar’s range sensing as well.

For each detected car, we construct a visual fingerprint.
A visual fingerprint consists of vision-based features, which
remain robust across significant angular changes. Visual fin-
gerprinting is needed for two reasons: (a) to merge all ob-
servations of a participating car from different view-points of
sensor rich cars, and (b) to map sensor-rich cars’ observations
with the GPS of the participating car on which the obser-
vations were made. We use the HSV spatiogram [25] and
car categories (sedan, SUV, etc) [23] to construct a unique
visual fingerprint. This fingerprint is used to identify a car

from different viewpoints.
After car detection, the next step is to estimate the dis-

tance/angle of participating cars with respect to the lidar.
To achieve that, we overlay the lidar pointcloud on top of
RGB frames. This process is not straightforward because the
lidar and RGB cameras are separated by a distance on the
mount. Therefore, a transformation between the two needs
to be estimated. In computer graphics, such a transformation
can be achieved by the combination of two matrices: rotation
(R) and translation (T ). We adopt techniques discussed in
[26] to estimate these values. Once estimated, any 3D point
(X,Y, Z) in the lidar pointcloud can be converted to their
respective pixel coordinates (x

p

, y

p

) by multiplying it with the
rotation matrix R and adding translation T to it. For a given
configuration, once R and T are estimated, they remain fixed
unless the placement (mount in our case) is changed. Due to
excessive cost (> $30K) of 360° cameras, we use multiple
phones to emulate 360� awareness; however, the calibration
is performed only once. We calculate R and T for the other
phones leveraging the mount’s angular symmetry. Once a lidar
pointcloud is overlaid on RGB frames, we can estimating
distance/angle of an individual car. We first sub-select the
pointcloud falling under the detection bounding box of a car.
Since multiple points fall within this box, the point closest to
the center pixel is taken as the representative distance/angle.

The CoDrive cloudlet is implemented in the robotic oper-
ating system (ROS). In Figure 6, each box is implemented
as a ROS node. Each node publishes and subscribes to one or
multiple topics. The data from three sensor nodes (PointCloud,
Image, and Location) are received asynchronously at the
Master node. We use the ApproximateTime algorithm in
ROS to nearly-synchronize these streams and to create batches
of triplets. These batches are then passed through a computer
vision module which outputs visual fingerprints of the cars,
distance, and angle. Finally, this information is uploaded to
the edge for further processing.

PointCloud
Capture

Image 
Capture

Location
Capture

pub: PointCloud<PointXYZIRA>

sub: getPointCloud

sub: getVideoFrames

pub: cv::Mat

pub: Location

sub: getLocation

Master
sub: PointCloud<PointXYZIRA>
sub: cv::Mat
sub: Location
ApproximateSync<PointCloud, 

Mat, Location>

Computer 
Vision

List<Rectangle, 
Distance, 
Bearing, 
Features>

Edge Node

pub: <PointCloud, Mat, Location>

Fig. 6: Processing pipeline of the CoDrive cloudlet

Computation at the Edge: The output of the cloudlet pipeline
is uploaded to the edge node. Furthermore, legacy cars use the
CoDrive navigation app to report their visual fingerprint during
enrollment. In addition, the navigation app reports the cars'
GPS locations in real-time. The CoDrive edge node collects
this information and performs two main operations: (a) visual
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fingerprint matching, and (b) location optimization on the
coarse GPS locations.

Visual fingerprint matching is a straightforward process.
Each legacy car user registers with CoDrive by specifying
their car’s make, model, and year. Since fingerprints of legacy
cars do not change, they are precomputed and stored at the
edge. We automatically map legacy cars' GPS location to a
fingerprint when it is streamed to the edge. We correlate visual
fingerprints reported by all cars with each other, i.e., those
received from sensor-rich cars and those precomputed. Based
on the correlation value, observations around a car are joined
and forwarded to the next stage for location optimization.

The edge solves a non-linear location optimization problem.
Let a road scene be a connected graph with cars as nodes.
An edge is a distance/bearing measurement from a sensor-rich
car (source) to another car (destination). Then, for every road
scene, the edge constructs a set of constraints based on sensor-
rich cars' observations and plausible roads near the collected
GPS measurements and generates an objective function aimed
to minimize the positioning error. It then feeds the constraints
and the objective function to the location optimizer which—
using the Differential Evolution method—finds new positions
for all cars (Section III).

Computation on the Phone: Our phone side module is
lightweight—a navigation app which reports GPS locations
to the edge and a service to detect steering maneuvers from
inertial sensors. Essentially, after obtaining precise positioning
from the edge, our app identifies steering maneuvers such as a
lane change or turn to track lane-position changes. We use the
gyroscope to detect events such as turns and lane changes [12].
However, unlike [12] which uses peak-detection with hard-
coded thresholds, we use a neural network to train a model
around each event [27]. We then use a fixed length gyroscope
time series data to classify and flag events in real-time.

III. LOCATION OPTIMIZATION

CoDrive utilizes the advanced capabilities of sensor-rich
cars and the coarse location estimates of legacy cars to
accurately—within a few meters—recreate a road scene. For
example, consider the following scenario: two sensor-rich and
two legacy cars are moving on the same road and direction.
Both sensor-rich cars detect all other cars in the scene and
estimate distances/angles using the techniques presented in
Section II. We represent a road scene as a connected graph.
When a sensor-rich car, detects another car at a distance and
angle from itself, it translates that into an edge. The edge
has the sensor-rich car as the source node and the detected
car as the destination node. Given this graph, we attempt to
answer the key question: how can we improve the positioning
accuracy of all cars on a road?

In our work, we model traffic as an optimization problem.
Intuitively, our goal is to minimize the overall GPS error of
participating cars in a road scene. The solution we seek must
respect, or is constrained by, the observations of sensor-rich
cars and the self-estimated GPS locations. We also aim to

preserve the shape of the traffic as much as possible, which
is paramount in making lane-level inferences. Additionally,
our solution must be independent of any stationary landmarks,
road signs, lane markings, or any road conditions.

In particular, CoDrive aims to minimize the cumulative
positioning error of all cars that participate in a road scene.
Every car in the scene has at least one self-reported location
from GPS, in addition to locations reported by sensor-rich
cars around it. Our solution minimizes the distance between
all reported locations. However, we do that cumulatively since
a solution for one car can affect the other. Formally, let C

i,j

be
the location of car i reported by car j, where C

i,j

comprises
of an easting (x) and a northing (y) 1: C

i,j

= hcx
i,j

, c

y

i,j

i. Now,
let V

i

be the set of Views of car i, where the cardinality of V
i

,
|V

i

|, equals the number of sensor-rich cars that detected car
i. V

i

is then a set that consists of Views v

j

i

of car i by car j.
Also, each such view consists of the distance between j and
i (dj

i

) and the bearing or heading 2 (✓j
i

) of the observation.
Thus v

j

i

= hdj
i

, ✓

j

i

i.
In a trivial case, where a car reports it's own location and it

is not detected by anyone else, the location error would simply
be the distance between the true location K

i

and the self
estimated location C

i,i

: E
i

= kK
i

, C

i,i

k. However, when there
are multiple Views of a car's location, the cumulative error for
car i becomes: E

i

= kK
i

, C

i,i

k +

P
j2V

i

kK
i

, C

i,j

k, i 6= j,
which is equal to the sum of distances from the geometric
median of all reported locations. Therefore, our end goal is
to find the true locations K

i

, 8i, that minimize the following
objective function:

Objective Function
X

8i

(kK
i

, C

i,i

k +

X

j2V

i

kK
i

, C

i,j

k), i 6= j (1)

However, when a sensor-rich car detects another car at a
specific distance and angle, its accuracy confidence is inherited
in the estimation of the detected car's position. The detected
car also reports its own location with a different confidence.
Therefore, the true location of each detected car lies within
multiple overlapping confidence regions. Formally, we first
restrict K

i

to be within the reported accuracy range of the
GPS of car i. We then take each reported location C

i,j

as the
center of a circle whose radius e

j

is defined by the location
confidence of car j. Now, K

i

needs to be at the intersection (or
within all) C

i,j

-centered circles. We include these conditions
in the GPS Constraints:

GPS Constraints 8i, j : kC
i,j

, K

i

k � e

i

 0

(2)

As shown in Section II, sensor-rich cars can locate other
cars and report the distance and the angle between themselves
and the observed car. We translate distance and angle into a set
of constraints for our optimization. Formally, these constraints

1The coordinates are transformed to UTM.
2Bearing indicates the clockwise angle in degrees from North.
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dictate where a point hkx
i

, k

y

i

i can be placed, given the C

i,j

and v

j

i

. We define the Distance and Angle Constraints as:

Distance and Angle Constraints 8i : 8vj

i

, k

x

j

+ (d

j

i

⇤ cos�

j

i

) = k

x

i

,

8i : 8vj

i

, k

y

j

+ (d

j

i

⇤ sin�

j

i

) = k

y

i

(3)

Where, �

j

i

is the angle of the v

j

i

view in anti-clockwise
direction from UTM eastings. Thus, given the heading ✓

r in
radians one can calculate �

r as follows: �

r

= ((

⇡

2

� ✓

r

) +

2⇡) mod 2⇡. However, it might be the case that some cars
have multiple views. The distance and angle constraints are
then relaxed by allowing the solution to be within a rectangle,
spanning from the minimum to the maximum observed values.

Due to the previous constraints, a plausible solution should
retain the shape of the scene but could end up on a wrong
street or on a building. We improve further by constraining
the solution within road boundaries. We find the road closest
to the majority of the reported locations and generate a
new set of constraints called Road Constraints. Formally,
let V = hv

1

, v

2

, ..., v

n

i be a set of location points and
E = he

v1,v2 , ev2,v3 , ..., evn,v1i be a set of lines connecting
location vertices. A road region is then described by a polygon
R = hV,Ei. The road constraints then become as described
in Equation 4. Equation 5 summarizes the optimization.

Road Constraints 8i : K
i

2 R (4)

Minimize
X

8i

(kK
i

, C

i,i

k +

X

j2V

i

kK
i

, C

i,j

k), i 6= j

Subject to 8i, vj

i

: kC
i,j

, K

i

k � e

i

 0,

8i, vj

i

: k

x

j

+ (d

j
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IV. EVALUATION

Our evaluation focuses on CoDrive's contributions. There-
fore, we omit evaluation for cloud vs edge vs cloudlet tradeoffs
or computer vision related aspects. These have been already
studied by several previous works. In evaluating CoDrive, we
focus on the following research questions, specifically how
does CoDrive perform: (RQ1) in preserving the shape of the
traffic; (RQ2) as the cars' GPS accuracy deviates; (RQ3) as
the car topology deviates; (RQ4) as the road segment changes;
(RQ5) as the number of lanes deviates.

Evaluation Parameters and Plan: We derived ground truth
using Google Earth. We used Google Earth to manually
mark different topologies and acquire their GPS coordinates.
We strategically position placemarks relative to recognizable
landmarks in the aerial view (e.g., road signs, intersection)
so that the scene could be precisely reconstructed during
a real world experiment. Positioning accuracy is compared

across four system regimes: GPS, Map-matching, CoDrive w/o
optimization, and CoDrive. For the baseline, we mimic GPS
errors in the most realistic way possible. In particular, we
introduce GPS noise to the ground truth locations based on a
Rayleigh distribution, which is often used to approximate GPS
errors [28]. However, it only describes the noise magnitude.
We derive erroneous locations by calculating a bearing offset
using a uniform distribution between 0 and 2⇡. We further
compare CoDrive to simple Map-Matching. Map-matching is a
well-known technique used in all current generation navigation
devices. However, most state of the art approaches require
continuous GPS data of a specific vehicle’s route for their
inference. In constrast, CoDrive’s goal is different: it utilizes
snapshot data of a traffic scene among all participating vehicles
encountered by a sensor-rich car, to correct their position-
ing. After the correction, previous dead-reckoning and map-
matching approaches can be used in CoDrive, until the next
correction. Thus, for a fair comparison, we use the nearest
API of the Open-Source-Routing Machine (OSRM) [29] for
the Map-Matching implementation. This reflects a reported
GPS point to the nearest road segment.

Moreover we compare CoDrive with CoDrive w/o optimiza-
tion. In the latter we calculate the locations of cars with respect
to sensor-rich cars using the observed distance and angle
information. We do this to demonstrate the effect of a sensor-
rich car's positioning error. For example, if the positioning
of a sensor-rich car is precise, then the calculated location
should be highly accurate as well. Therefore, the optimization
should not be needed. However, it is unclear how accurate
a sensor-rich car can be in the real-world, at least not until
they are widely adopted. In case, when multiple observations
from different sensor-rich cars are received, we use their
geometric median as the calculated location. Furthermore, this
corresponds to the scenario, where none of the legacy cars in
a scene participate. We also use CoDrive w/o optimization as
the seed to accelerate our optimization solver.

Most of our evaluation experiments are conducted with real
cars on real roads. We block different road segments within
our institution for a few hours over weekends and rented cars
which we positioned according to different topologies. We
designate one car as the sensor-rich car with our custom kit on
its roof, while the rest act as legacy cars. Distance and bearing
information are real measurements captured from our sensor-
rich car. Ideally, the GPS measurements for the baseline should
be derived from GPS receivers placed within the vehicles. We
do that for the only feasible scenario, which is within the roads
of our own institution (see REAL in Figure 10b). However,
to evaluate CoDrive in different GPS accuracy scenarios we
would need to coordinate all cars to such environments. This
entails various practical challenges. Therefore, we simulate
GPS errors as described earlier. In all real world experiments,
the distance and bearing are derived from our emulated sensor-
rich car described in Section II.

For simulations, GPS ground truth of all cars is again de-
rived from the placemarks. The cars' GPS positioning error is
simulated with a Rayleigh distribution as before. The distance
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and angle between a sensor-rich and legacy car are calculated
using trigonometry between the simulated GPS locations of
the cars. Simulation experiments are leveraged to evaluate
CoDrive in scenarios with more than one sensor-rich car.
Simulation experiments are indicated with a star (*).

Fig. 7: Evaluation Car Topologies

We perform experiments across a varying number of lanes
and topologies. The schematics of our topologies are provided
in Figure 7. We further parametarize the mean and standard
deviation of the introduced GPS distance error for legacy cars
using µ

l

, �
l

and sensor-rich cars using µ

s

, �
s

.

Challenges in a Complete Real World Evaluation: Ideally,
we wish to perform all experiments in the real world. Un-
fortunately, we face several practical hurdles. For example,
to evaluate CoDrive on Topology 3-D, requires coordinating
15 cars on the road. Similarly, at least two cars need to act
as sensor-rich cars and constantly moved, a time-consuming
endeavor. Furthermore, repeating every experiment safely on
different roads with varying number of lanes is a daunting task.
Each experiment run is time-consuming, primarily because
the ground truth for each car needs to be marked at the
physical location and then cars need to be moved to collect the
measurements. This requires blockage of the selected roads for
several hours. We could not conduct experiments in an empty
parking lot due to the Map-Matching baseline, which only
maps a GPS location to a real-road segment (unless virtual
roads are created). We also face several legal issues, including
ones within the boundaries of our institution. On the other
hand, relying only on the real GPS values collected when per-
forming the experiments within our institution, would prevent
us from demonstrating CoDrive's performance under different
conditions. In other words, an ideal evaluation is impractical in
our case, whereas a practical real-world evaluation would be
incomplete. In our work we strike a balance between the two
to represent different interesting scenarios and draw a more
complete picture. To achieve that, we simulate GPS errors [28]
to represent notable scenarios.

Evaluation Results: First, we evaluate CoDrive’s accuracy
in preserving the shape of traffic. This is the most important
aspect of CoDrive since if it can reconstruct the traffic’s
geometry, it would allow for lane-level inferences. We use
procrustes shape analysisto measure the similarity between the
optimized and the original traffic view. In procrustes, a shape
is represented as a graph. Procrustes finds a transformation
between a source and a target shape. In our case, traffic is
converted to a shape. A shape is constructed using cars as
nodes and the distance/angle between them as edges. We use

the ground truth car locations as the target shape. The source
shape consists of the estimated locations of cars by different
approaches. We only show results for topology 3-D due to its
highest density of cars. The results for other topologies are
indifferent, hence not shown. For these experiments we fix
µ

l

= 6m, �
l

= 2.5m, and µ

s

= 3m, �
s

= 1m.
We use two standardized metrics to evaluate shape preser-

vation: (a) a similarity measure d and, (b) a scaling measure
s. d captures how similar two shapes are, which is derived
from rotation/translation of a source shape to a target shape.
The more similar the two shapes are, the higher the similarity.
However, this metric is scale agnostic, that is, a circle with
radius 1 and another with 1000 have the maximum similarity
(d = 1). To address this, we introduce a scale measure
s, which captures the scale factor after the transformations
between the two shapes. Figure 8 depicts a single trial of
the experiments. GPS looks haphazard as expected, while
Map-Matching projects all GPS locations on a straight line
(the center of the nearest road segment), retaining no lane-
level information (see Figure 8c). Figure 9a and 9b quantify
the same visual, across 100 trials, showing the similarity (d)
and scale (s) across various approaches. The cdf captures
cumulative values of d and s. Evidently, CoDrive preserves the
traffic shape, making it applicable for lane-level positioning.
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Fig. 9: Accuracy in retaining the shape of the traffic.

To answer RQ2, we vary the GPS error (µ
s

) for sensor-rich
cars from 1�6m, keeping �

s

= 1m; we fix the GPS error for
legacy cars (µ

l

= 6m, �
l

= 2.5m). We also experiment with
GPS measurements collected from smartphones placed in cars
during the real experiment, referred to as REAL. Figures 10a
and 10b illustrate the performance of CoDrive for sensor-rich
and legacy cars respectively. CoDrive consistently outperforms
both baselines GPS and Map-Matched, for both the sensor-
rich and legacy cars. As expected, for smaller GPS error in
sensor rich cars, CoDrive shows marginal improvement over
w/o opt approach. However, as the error degrades, CoDrive
tends to outperform the others. In particular, for sensor-rich
cars, CoDrive can reduce the cumulative GPS error from
2.73m down to 1.9m in the REAL case, and from 7.26m to
5.20m when µ

s

= 6m—a 28% and 30% reduction in error
respectively. For legacy cars, CoDrive brings the GPS error
down from 9.3m to 5.2m when µ

s

= 6m and from 9.13m
down to 2.15m when µ

s

= 1m—a 66% and 76% reduction
in error respectively. In cases, when sensor-rich car errors are
very high (µ

s

> 6m), CoDrive continues to reduce errors
but does not guarantee lane-level positioning. Note also, that
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(a) Ground Truth (b) GPS (c) Map-Matched (d) CoDrive w/o opt (e) CoDrive

Fig. 8: Traffic shape preservation with different positioning approaches. CoDrive can reconstruct the aerial view of the traffic.
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Fig. 10: CoDrive outperforms others as cars’ accuracy degrades (10a, 10b), with key benefits in downtown-like scenarios (10c).
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Fig. 11: CoDrive outperforms others as topologies change (11a, 11b), and as road segments change (11c, 11d).

due to the clear aerial visibility and GPS line-of-sight in the
roads within our institution, the REAL GPS positioning error—
aquired by phones in vehicles—is low to begin with. This
prevents us from appreciating the benefits of CoDrive in more
challenging scenarios which we address by simulating GPS.

The previous experiments describe highway scenarios in a
clear line-of-sight. Next, we evaluate CoDrive in a downtown
scenario where GPS errors degrade between 30-50m. To
approximate realistic GPS errors we fix µ

l

= 30m, �
l

= 15m,
and µ

s

= 3m, �
s

= 1m. We perform the experiment on three
different topologies: 3C, 3C(*), 3D(*). Figure 10c captures the
accuracy of CoDrive in such extreme environments. CoDrive
achieves a 91.14%, 91.19% and 92.03% reduction in error
respectively which translates to a redaction in error by a factor
of 11.3x, 11.3x and 12.5x respectively. Note that this reduction
is for all the 8 legacy cars in 3-C and 13 in 3-D – upon a mere
encounter with a sensor-rich car.

To answer RQ3, we fix GPS errors to µ

s

= 3m,�

s

=

1m for sensor-rich cars and µ

l

= 6m,�

l

= 2.5m for legacy
cars. We use all three-lane topologies. 3-A and 3-C are real
world experiments, while 3-B and 3-D are simulations. Figures
11a and 11b summarize our results. We found that CoDrive
again outperforms GPS and Map-Matched in all scenarios. In
addition, it remains unaffected to topology changes.

To answer RQ4, we experiment with the 2-A topology

on different road segments inside our institution’s campus.
Ideally, the accuracy should be invariant of road conditions.
However, due to different background and visual features,
cloudlet computations (distance/angle) can get affected (Sec-
tion II). We fix GPS error to µ

s

= 3m,�

s

= 1m for sensor-
rich cars and µ

l

= 6m,�

l

= 2.5m for legacy cars. Figures 11c
and 11d document our results. Incidentally, Map-Matched does
well in estimating the sensor-rich car's location on road R1
(Figure 11c). This happened because the only one sensor-rich
car’s position and its Map-Matching projection coincided on
the right lane. Clearly, the same is not true for the other road
segments and the cars in the left lane. CoDrive remains robust
in all situations.

Lastly, to answer RQ5, we design experiments for the 1-
A, 2-A and 3-C topologies. We fix the GPS error to µ

s

=

3m,�

s

= 1m for sensor-rich cars and µ

l

= 6m,�

l

= 2.5m

for legacy cars. As illustrated in Figures 12a and 12b, the
number of lanes does not negatively impact CoDrive.

V. RELATED WORK

Outdoor localization has been extensively studied. Map-
matching [30], Kalman-filter and sensor fusion [31], visual
odometry [32], and static landmark-based dead reckoning [33]
are among the most commonly used techniques. Nevertheless,
they are inadequate for next-gen applications. Differential GPS
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Fig. 12: CoDrive remains robust to lane count.

[34] is a technology which addresses this issue to some
extent. Unfortunately, it performs poorly in urban canyons
and requires a custom receiver – hindering its widespread
deployment. CoDrive, identifies a unique error correction
opportunity in urban environments, where most sensor-rich
cars are expected to be abundantly available in the near future.

Other works have focused on vision aided navigation.
Mobileye [35] uses a forward-looking camera for advanced
driver assistance systems (ADAS). SignalGuru [36] uses a
phone camera and GPS to detect traffic light status and predict
optimal speed for maximum fuel savings. [37] uses a phone
camera and crowdsourcing to identify scenic routes. Similarly,
[38] uses phones’ dual cameras to detect obstacles and alert
drowsy drivers on the road. [39] estimates vehicle's lane
position using aerial photographs from surveillance cameras.
CoDrive achieves the same without additional infrastructure
or requiring a phone to be mounted on the windshield.

VI. CONCLUSION

This paper presents CoDrive, a system for an open-car
ecosystem, where cars collaborate to improve positioning of
each other. CoDrive results in precise reconstruction of a traffic
scene, preserving both its shape and size. Further, CoDrive
is independent of stationary landmarks and requires no ad-
ditional hardware on existing cars. CoDrive utilizes coarse
GPS readings of participating cars and visual, distance, and
angle information of sensor-rich cars – translating them into
optimization constraints. Based on these constraints, CoDrive
minimizes the cumulative positioning error of all participating
cars. By leveraging inter-car collaboration, CoDrive introduces
a new way of achieving better positioning in dense urban
environments, where most traditional approaches struggle.
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