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Abstract. LiDAR-driven 3D sensing allows new generations of vehicles
to achieve advanced levels of situation awareness. However, recent works
have demonstrated that physical adversaries can spoof LiDAR return
signals and deceive 3D object detectors to erroneously detect “ghost”
objects. Existing defenses are either impractical or focus only on vehi-
cles. Unfortunately, it is easier to spoof smaller objects such as pedestri-
ans and cyclists, but harder to defend against and can have worse safety
implications. To address this gap, we introduce Shadow-Catcher, a set of
new techniques embodied in an end-to-end prototype to detect both large
and small ghost object attacks on 3D detectors. We characterize a new
semantically meaningful physical invariant (3D shadows) which Shadow-
Catcher leverages for validating objects. Our evaluation on the KITTI
dataset shows that Shadow-Catcher consistently achieves more than 94%
accuracy in identifying anomalous shadows for vehicles, pedestrians, and
cyclists, while it remains robust to a novel class of strong “invalidation”
attacks targeting the defense system. Shadow-Catcher can achieve real-
time detection, requiring only between 0.003 s–0.021 s on average to pro-
cess an object in a 3D point cloud on commodity hardware and achieves
a 2.17x speedup compared to prior work.
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1 Introduction

High-precision depth sensors are increasingly being used for mapping the envi-
ronment in various application domains, such as robotics [23], security surveil-
lance [11] and augmented reality applications [16]. LiDARs (derived from light
detection and ranging) are popular such depth sensors. They are pervasively
deployed [3,5] in autonomous vehicles (referred to as AVs henceforth) where a
new class of Deep Neural Network (DNN) 3D classifiers leverage their measure-
ments (processed in batches called 3D point clouds) to detect objects – a neces-
sary task for downstream safety-critical driving decision-making [17,20,21,29].
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Fig. 1. Genuine object’s 3D Shadow Fig. 2. Ghost object’s 3D Shadow

Recent studies have shown that it is possible to attack LiDAR-based
perception systems by spoofing LiDAR return signals [4,15,22]. To defend
against model-level LiDAR spoofing attacks, prior works suggested using sensor
fusion [4], view fusion (SVF) [24], or leveraging 3D-point statistical anomaly
detection based on physical invariants such as object occlusions and free space
(CARLO) [24]. Unfortunately, sensor fusion approaches [13,31] rely on the
assumption that a majority of the sensors are not under attack. SVF makes
fewer assumptions but requires expensive retraining of the classifiers and has
reduced classification accuracy, which is more dangerous than failing to detect
ghost objects. CARLO is a backward compatible method, agnostic to the adver-
sary and achieves good accuracy in detecting spoofed vehicles with an acceptable
performance overhead. However, CARLO depends on the size of the object’s
bounding box and on the fact that genuine vehicles exhibit a high points’ den-
sity. This approach does not work for smaller objects such as pedestrians and
cyclists. Lastly, there is no approach to date which uses semantically meaningful
information which can be crucial in reasoning and explaining system decisions.

In this work, we introduce a new approach to detect model-level LiDAR
spoofing attacks on both large and small objects that assumes neither the pres-
ence nor the cooperation of other sensors. Our mechanism is agnostic to the
classification model targeted: any detected object, either genuine or fake (ghost),
will be subjected to verification. We observe that real 3D objects are closely fol-
lowed by 3D shadows, which exhibit different characteristics than the shadows of
spoofed objects (see Figs. 1 and 2). We use this observation to design an efficient
and effective detection mechanism that verifies the presence of objects only when
they exhibit the expected 3D shadow effect.

We design, develop and evaluate a system, Shadow-Catcher, which firstly
employs ray optics to map the expected shadow region of a detected 3D object.
Then, it uses a scoring algorithm leveraging exponential decay weight estimation
to reduce the importance of measurement artifacts and determine whether the
proposed shadow region corresponds to (a) a real shadow or (b) an anomalous
shadow. In the latter case, it uses a binary classifier trained on density features
extracted from the proposed shadow region, to further classify a shadow region
as a ghost object shadow or as a poisoned shadow (thus verifying the presence
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of a true object). Our evaluation shows that more than 98% of the 3D objects
in our dataset have meaningful shadows, and that Shadow-Catcher’s shadow
region estimation closely captures their true shape. We also show that Shadow-
Catcher consistently achieves more than 94% accuracy in identifying anomalous
shadows. Shadow-Catcher can further classify with 96% accuracy whether the
anomalous shadow corresponds to a ghost attack. In addition, we also design
a novel, strong, object invalidation adversary which follows an optimal strategy
to launch an evasion attack that poisons a genuine shadow such that it is mis-
classified as a ghost shadow, thus invalidating genuine objects. We demonstrate
that Shadow-Catcher remains robust. Lastly, Shadow-Catcher achieves real-time
detection (2.17x improvement compared to related work [24] for processing ghost
vehicles) rendering it suitable for deployment both online to provide hints to
vehicle passengers, operators or end-to-end AI systems and offline for forensic
analysis. Visual examples of Shadow-Catcher are shown online [2].

2 Background and Related Work

LiDAR Sensors. To scan the environment, LiDARs emit a pulse in the invisible
near-infrared wavelength (900–1100 nm), which is reflected on incident objects
before returning to the receiver. Based on the time of flight, LiDARs calculate
the distance between the sensor and the incident object. LiDARs used in AVs
(e.g. Velodyne LiDARs) emit a number of light pulses from an array of vertically
arranged lasers (16, 32, 64, etc.) that rotate around a center axis to obtain a 360-
view of the surroundings of the sensor unit. The sensor translates a return signal
to a measurement 3D point consisting of coordinates (x,y,z) and a reflection
value (R) corresponding to the return signal’s reflectivity or signal strength. 3D
point clouds are commonly projected to 2D in a more compact representation
called birds-eye view or BEV for short.

3D Object Detector Attacks. Prior work showed that 3D object detectors
based on point-clouds are vulnerable to LiDAR spoofing attacks [4,15,22,24] and
point cloud perturbation attacks [14,26,28,30,32]. Wicker and Kwiatkowska [27]
further found that 3D object detectors are trained to learn object representa-
tions from a “critical point set”, and subtle changes in the input greatly impact
the model’s performance. More closely related to our work are LiDAR spoofing
attacks. Petit et al. [15] first introduced physical attacks to generate noise, fake
echos and fake 3D objects by relaying and replaying LiDAR signals. However,
they were unable to spoof objects closer than 20 m from the LiDAR receiver. Sub-
sequently, Shin et al. [22] managed to inject 10 3 D points that are up to 12 m in
front of the LiDAR receiver. Cao et al. [4] then demonstrated the capability to
spoof up to 100 points and proposed a model-level spoofing methodology that
can fool a target AV simulator. Recently Sun et al. [24] successfully used up to
200 points to launch model-level attacks which leverage 3D points of occluded or
distant vehicles to spoof front-near vehicles. Such attacks can have severe reper-
cussions as they can force a vehicle to brake abruptly [4]. This might physically
injure passengers, halt traffic or induce a crash with the vehicle behind it.
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3D Object Detector Defenses. Existing defenses for 3D point cloud object
detection focus on defending against point cloud perturbations [14,30,33]. More
related to our work are point injection (or LiDAR spoofing) attacks in AV set-
tings, where suggestions were made to use multi-modal sensor fusion [13,31], view
fusion [24] and to leverage occlusion patterns [24]. Multi-modal sensor fusion
makes strong assumptions about the integrity of sensors, Sun et al.’s [24] SVF
approach is promising but not backward compatible, and requires expensive re-
training to deal with a noticeable penalty in its classification performance which
may prove more dangerous than the attack it tries to address. Sun et al. [24] also
proposed (CARLO) which is similar to our approach as it can be applied orthog-
onally to the object classifier. However it is significantly slower than Shadow-
Catcher for vehicles. More importantly, CARLO is not robust against smaller
objects, such as pedestrians and cyclists. Lastly, our work introduces a new
semantically meaningful physical invariant, 3D shadows.

3 Threat Model

We adopt the threat model from [4,24] and assume a physical adversary who
can spoof LiDAR return signals to fool an AV’s 3D object detector model. The
adversary can spoof the signals either by placing an attacker device on the road-
side or by mounting it on an attack vehicle driving in front of the target vehicle
in an adjacent lane [4]. The attacker’s device can capture the LiDAR signal, and
emit a return signal with a delay which controls where in the resulting point
cloud the spoofed point will appear. This has been proven as a realistic attack
surface [4,15,22,24]. Below we define the adversary’s (A) capabilities and goals.

A’s Capabilities. A enjoys state of the art sensor spoofing capabilities and
can inject ≤200 points within a horizontal angle of 10◦ [24] in a 3D scene. A
can launch model-level spoofing attacks able to emulate distant and occluded
vehicles [4,24]. In addition, we consider attacks spoofing smaller objects with
≤200 injected points. A is a white-box adversary with full knowledge of the
internals of both the victim model and the detection mechanism.

Extending the Threat Model: Considering Smaller Objects. Prior work
introduced a defense (CARLO) against attacks aiming to spoof vehicles [24].
However CARLO is limited when considering smaller objects, such as pedestri-
ans, cyclists or motorcycles. Our experiments evaluating CARLO’s limitations
to detect spoofed pedestrian objects are given in Appendix A. Our approach
considers vehicle spoofing but also spoofing of smaller objects such as pedestri-
ans and cyclists. The latter is an even easier target for A but harder to defend;
genuine pedestrian and cyclist objects consist of ∼200 points on average—by
analyzing the full KITTI dataset we found an average number of points of 478,
206 and 174 in the bounding boxes of cars, pedestrians and cyclists respectively.
Considering such objects is paramount, as they are commonly encountered, and
the safety repercussions can be more severe in the case of an accident. In the
KITTI dataset, which contains LiDAR measurements from real-world driving
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scenarios, more than 30% of the objects detected on the road are pedestrians
and cyclists, with pedestrians being the second most predominant object after
cars [10]. Failing to reliably detect (or verify) such objects (e.g. in an invalidation
attack), has a higher probability of leading to human injuries and even fatalities
[25] than accidents involving only vehicles.

Extending the Threat Model: Object Invalidation Attacks. Using shad-
ows to verify true objects, might incentivize attacks where the adversary’s goal
changes from injecting ghost objects to invalidating genuine objects by poison-
ing their shadow. This could lead to an erroneous safety-critical decision with
potentially dire consequences. Our defense mechanism recognizes this. In con-
trast with related work, it considers for the first time an even stronger adversary
which is capable of launching both ghost object injection and object invalida-
tion attacks. To test the robustness of our system against object invalidation
attacks, we formulate a novel, strong attack with full knowledge of the detection
mechanism, and evaluate the success of this attack against our system.

4 3D Shadows as a Physical Invariant

We observe that any 3D object representation in a point cloud is closely fol-
lowed by a respective region void of measurements. We call this the 3D shadow
effect. Object detectors do not take into account shadow effects and only learn
point representations of objects for the detection task. 3D shadow effects occur
because LiDAR sensors record measurements (3D points) from return light
pulses reflected off an object in a direct line of sight that return within a con-
strained time period to the receiver of the sensor unit. Thus, anything behind
the incident object cannot be reached by the light rays and cannot be measured,
resulting in void (shadow) regions. This observation leads us to hypothesize that
the presence and characteristics of shadows can be used to verify genuine 3D
objects. In this section we systematically analyze real 3D driving scenes to verify
the presence of shadows in genuine 3D objects, obtain ground truth for such
shadow regions and to verify that ghost objects cannot have realistic shadows.

Presence of 3D Shadows. To verify the presence of 3D shadows we randomly
sampled 120 scenes from the KITTI dataset [10]. The dataset includes LiDAR
measurements (point cloud scenes) from real driving scenarios in Karlsruhe,
Germany. The dataset is accompanied by a set of object labels for training
3D object detectors. We used these labels to locate true objects in each scene.
We then converted each scene to its birds-eye-view (BEV) representation by
projecting each 3D point to a 2D plane. Then, we went through all 120 scenes
and (1) manually annotated shadow regions, if present, using the VIA annotation
tool [6], and (2) assigned shadow regions to objects.

In the 120 sampled scenes, we found a total of 607 objects (see Table 1). All
objects are located in the frontal view of the vehicle and include objects both on
the road and on sidewalks. Out of the 607 objects, we have identified shadows for
597 or 98.3% of the objects, the details by object type can be found in Table 1.
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We could not identify shadows for the remaining 10/607 (1.6%) objects, due to
the objects’ location in the environment. For example, if one object is directly
in front of another but not fully occluding it (e.g., a person is standing in front
of a vehicle), the first object cannot be unequivocally assigned a shadow region
because of the second object.

Table 1. Objects and their shadows in 120 KITTI scenes.

Count in
dataset

% of total
objects

Labeled
shadows

% of object
type

Car 444 73.1 439 98.9

Pedestrian 45 7.4 41 91.1

Cyclist 17 2.8 17 100

Van 56 9.2 55 98.2

Truck 17 2.8 17 100

Tram 6 1.0 6 100

Sitting person 1 0.2 1 100

Miscellaneous 21 3.5 21 100

Total 607 N.A. 597 N.A.

Conclusion. By manually labeling shadow regions for objects, we found strong
evidence of co-occurrence of objects and shadow regions. This supports our
hypothesis that the presence of shadows is a physical invariant that can be
potentially used to verify genuine objects in 3D scenes.

3D Shadows of Genuine vs. Ghost Objects. LiDARs default operating
mode records the Strongest Return Signal. Thus, successfully spoofing a signal, is
equivalent to transforming a measurement point in the original point cloud to the
desired spoofed position [4]. In other words, following the physics of the LiDAR,
spoofing a point should result in a corresponding point behind the injected point
(in the laser ray direction) to be removed from the point cloud. This would
result in a void region that might resemble a 3D shadow behind a concentrated
attack trace. However, the resolution of LiDAR varies with distance. Ground
reflections and objects nearer to the LiDAR have higher density of points. This
density decreases as the distance from the sensor increases. Due to the limitations
of the attacker’s A capabilities, and the LiDAR’s resolution (point density per
distance), there exists an effective distance where the attacker would be unable
to successfully spoof an object while mimicking a genuine shadow. This presents
an opportunity to leverage 3D shadows to develop a robust detection mechanism.

To characterise the LiDAR resolution, we used a scene where the ego-vehicle
is in an object-free environment and analysed the ground reflection measure-
ments recorded. A 2 m × 2 m region of analysis was used to calculate the density
of points as a measure of the LiDAR’s resolution. We used the objects manually
labeled in the KITTI dataset of 7481 scenes, categorised the objects by type,
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counted the number of points in the object’s bounding box and binned them
by distance from the ego-vehicle. Table 2 shows the results of the analysis of
average point-cloud density with respect to distance for both ground reflection
measurements in clean environment and point measurements in the respective
object’s bounding box for the whole KITTI dataset. The LiDAR’s ground reflec-
tion resolution (Row 1 of Table 2) decreases sharply as the distance increases. At
a distance of 15 m–20 m, the density is about 200 points in a 2 m × 2 m region
(which corresponds to a horizontal angle of ≤10◦ at that distance). To have 200
points in their bounding box, Cars would need to be at a distance of 20–25,
whilst Pedestrians and Cyclists would need to be at a distance of 10–15. Thus,
the analysis shows that at a distance of 10 m and higher, the resolution of the
LiDAR (KITTI data were captured using a Velodyne HDL-64E LiDAR) is insuf-
ficient compared to the attacker’s capability and the attacker is able to spoof
objects with a corresponding shadow region that would be indistinguishable from
a real shadow. Therefore, the effective distance of Shadow-Catcher is determined
to be 10 m which is sufficient to detect the strongest adversary known to date,
who tries to spoof a front-near obstacle to cause an unsafe reaction by the AV.
Undoubtedly, both LiDAR and adversarial capabilities will evolve. The use of
higher-end LiDARs with more laser channels might introduce more attack oppor-
tunities, however, the attacker’s current capabilities to inject points reliably is
limited by hardware. Moreover, higher-end lasers also mean a higher resolution
(i.e. a denser point-cloud), which would require the adversary to reliably inject
significantly more points to spoof an object that exhibits a realistic shadow. If
the adversary’s capability matches the LiDAR point density, no defense would
be viable.

Table 2. Distance vs Avg. point density in object’s bounding box and clean environ-
ment

Distance from LiDAR (m)/Avg. points

0–5 5–10 10–15 15–20 20–25 25–30 35–40 40–45 45–50

Env (2 m × 2 m) 1295 859 288 196 103 73 42 28 10

Car (BBox) 4858 2040 865 405 208 117 73 51 36

Ped (BBox) 1187 455 207 99 62 42 27 29 16

Cycl (BBox) 1718 651 263 125 78 53 37 17 12

Conclusion. We characterised the LiDAR (Velodyne HDL-64E) scan resolution
of ground reflection and objects for the KITTI dataset. The result was used to
determine the effective distance which was found to be 10 m (conservative), where
A would not be able to reconstruct a legitimate looking object that subverts a
shadow detection mechanism. This distance can be further increased with higher
resolution LiDARs such as the Velodyne VLS-128.
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5 Shadow-Catcher Design

High Level Architecture. Shadow-Catcher’s overall architecture and deci-
sion workflow is summarized in Fig. 3. Shadow-Catcher is agnostic to the sensor
spoofing methodology and the victim model. It takes as input, the output of a 3D
object detector (bounding boxes of detected objects in 3D scene’s point cloud)
and the original point cloud of the scene, and performs a three-phase analysis to
determine whether the detected objects are genuine or ghosts. Shadow-Catcher
can further distinguish between ghost objects and genuine objects whose shadow
regions are being poisoned. In Phase 1, it employs a shadow region proposal algo-
rithm which uses geometrical optics (or ray optics) to generate proposed shadow
regions for each of the 3D objects detected by the 3D object detector. By tracing
rays from the reference point of the LiDAR unit, Shadow-Catcher can determine
the boundaries of shadow regions for 3D objects. However, the shadow region can
be imprecise and can include 3D point artifacts which in principle should not be
present. To deal with these imprecisions, in Phase-2, Shadow-Catcher’s genuine
shadow verification component, performs a point-wise analysis in each shadow
region to determine whether the region is indicative of a genuine shadow. For
this, it uses a novel 3D-point scoring mechanism. If the genuine shadow verifica-
tion fails, which would mean the system is under attack, Shadow-Catcher uses an
adversarial shadow classification model to determine whether the shadow region
is indicative of a ghost object’s shadow (thereby detecting a ghost attack) or
a genuine object’s shadow (thereby detecting an invalidation attack). Below we
elaborate on Shadow-Catcher’s three main components: (a) shadow region pro-
posal; (b) genuine shadow verification; and (c) adversarial shadow classification.

(1) Shadow
Region

Proposal
Algorithm

Bounding
Boxes

Shadow
Regions   

Genuine

3D point cloud

(2)Shadow Verification

(3) Adversarial Shadow
Classification

Anomalous ?
No

Yes

Has traits of Ghosts?

Invalidation
Attack

Ghost
Attack

No

Yes

   Object
Detector

Shadow-Catcher

Fig. 3. 3D scene perception pipeline with Shadow-Catcher integrated.

2D Shadow Region Proposal. Intuitively, if a scene is converted into its 2D
representation, then, using ray optics, we can obtain an area (2D shadow region)
behind an object that rays cannot reach since they would have already reflected
off the incident surface of the object. To compute the shadow region, we first
convert a 3D scene into its 2D birds-eye view (BEV) compact representation.
Next, we compute the boundary lines of the shadow region. We first take the
coordinates of the bounding box for the detected object from the 3D object
detector. Using the coordinates of the corners of the bounding box, we compute
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the gradients of the lines from the reference point (position of the LiDAR unit)
to each of the corners. Let (xi , yi), ∀i = 1, . . . , 4, be the 4 anchoring corners
of a 3D bounding box on the ground. The gradients (mi) of lines connecting
the reference point (0,0) to corner coordinates are computed with mi = yi−0

xi−0 .
The minimum and maximum gradient lines define the shadow boundary lines
for the shadow region. To simulate the fact that LiDAR has a finite range we
define a maximum shadow length (l). The shadow length (l) can be derived from
the height of the object (h), with respect to the height of the LiDAR unit (H )
and the furthest distance of the object from LiDAR unit (dobj ). Using similar
triangles, the shadow length (l) can be derived as l = dobj × h

H−h . The shadow
boundary lines and the shadow length determine the full shadow region of the
object.

In principle, shadow regions should be completely void of points. Hence, it
would suffice to project all the points onto the 2D ground plane before examining
the 2D shadow regions. However, 2D shadow regions can only define a 2D area
behind the object, which corresponds to the projection of the shadow on the
ground. This can result in noisy points contaminating the shadow regions in lieu
of taller objects behind the target 3D object.

3D Shadow Region Proposal. To address the aforementioned limitation of
2D shadow regions we introduce the 3D shadow region estimation. With 3D
shadow regions, we examine a volume of space for the presence of points. The
base area of the 3D shadow region is the 2D region obtained using the 2D shadow
region proposal algorithm. To account for the height of the shadow region, we
explore two approaches: (a) simulate LiDAR light rays as in 2D shadow region
estimation, but this time analyze the points in the region of space bounded from
the ground to the non-occluded incident rays; and (b) use of a uniform height
above the ground level to obtain a short volume of space for analysis of points
(Illustrations on our website [2]). The choice of 3D shadow region estimation
method and their effects on detection performance are evaluated in Sect. 6.

Genuine Shadow Verification. After the shadow regions are identified,
Shadow-Catcher performs an analysis inside each region to determine whether
the shadow is genuine or not. As mentioned previously, in principle there should
be no measurements inside shadow regions, as light rays cannot reach there. How-
ever, inaccuracies of the shadow estimation, and noisy artifacts due to physical
effects, the placement and shape of objects can result in points being recorded
inside genuine shadow regions. Thus, a trivial approach which expects those
regions to be completely empty would be frequently flagging real objects as
ghosts, resulting in high error rates.

To mitigate this, we propose a method which reduces the significance of
noisy measurements inside shadow regions and assigns the shadow region an
anomaly score. Our genuine shadow verification method classifies a shadow as
genuine if its anomaly score is below a threshold. It first assigns a weight to each
point inside the shadow region. Intuitively, points due to noise are assigned a
lower weight, but points found in non expected regions (i.e. along the center-line
or close to the start-line) are assigned higher weights. Specifically, we use two
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exponential decay equations (Eq. (1) and (2)) on two axis of analysis to assign
weights to the points, where xstart, xend, xmid and xbound are the distances of
the point from the start-line, end-line, center-line and closest boundary line of
the shadow region and α is a parameter that tunes the rate of exponential decay.
The aggregate anomaly score of the shadow region is computed using Eq. (4),
where wmin is the minimum weight a point can obtain in any axis of analysis
(i.e. point at boundary line) and T is the total number of points in shadow.

wstart = exp

(
ln(0.5)

α
× xstart

(xstart + xend)

)
(1)

wmid = exp

(
ln(0.5)

α
× xmid

(xmid + xbound)

)
(2)

wmin = exp

(
ln(0.5)

α

)
(3)

score =

∑T
i=1(wstart,i × wmid,i) − (T × w2

min)

T × (1 − w2
min)

(4)

The anomaly score threshold is set empirically. An extensive analysis was
performed and the Receiver Operating Characteristic (ROC) curve was used to
determine the threshold that produces an acceptable True Positive and False
Positive Rate (see Sect. 6). An object is verified as genuine by Shadow-Catcher
if its shadow region gets a lower score than the anomaly threshold, otherwise
the shadow is flagged as anomalous. At this point Shadow-Catcher can already
detect that the system is under a LiDAR poisoning attack. However, we take this
a step further and also try to determine the type of attack against the system.

Adversarial Shadow Classification. A high shadow anomaly score indicates
either a ghost attack or an object invalidation attack. Shadow-Catcher distin-
guishes between the two. We observe that during ghost attacks, the shadow
regions of ghost objects exhibit a high density of points while points are sparse
in the shadow regions of true objects during invalidation attacks. Therefore, we
expect the distribution of points within the shadow regions of ghost vs invali-
dated objects to be distinguishable. Leveraging these observations we use clus-
tering to extract density features from shadow regions, which we then use to
train a binary adversarial shadow classifier. Shadow-Catcher uses this classifier
to determine whether an anomalous shadow is the result of a ghost attack or an
invalidation attack.

Feature Extraction. To characterize the density of the measurements in a shadow
region, we cluster points that are in spatial proximity. We use “Density-Based
Spatial Clustering of Applications with Noise” (DBSCAN) [7] for this purpose
as it is able to identify points that are clustered in arbitrary shapes and does
not require to pre-specify the number of clusters. This suits our use-case well,
as point clusters in 3D point clouds are irregular and the number of clusters in
a region is not known a priori.

Clustering points in shadow regions with DBSCAN, allows us to extract
the number of clusters found by controlling the density of clusters. Intuitively
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we would expect the shadow regions of ghost objects to exhibit multiple clusters
with regular and similar shapes. On the other hand, during an object invalidation
attack, we would expect the shadow region to be mainly void with points injected
by the attacker eliciting a high aggregated score near the region of high weighting
as modeled by the exponential decay equations in the axis of analysis. Thus, a
distinguishable characteristic of shadows for an invalidation attack would be a
small number of or no clusters detected (Example in [2]). From DBSCAN, we
then derive the following features to characterize the shadows of objects: (a)
number of clusters in the shadow region obtained from DBSCAN; (b) average
density of points in clusters obtained by taking the total number of points in
clusters and averaging out by the number of clusters.

Attack Classification Model. The shadow characteristic features are then used as
input to a binary classification model to distinguish between shadows of ghost
objects and shadows of genuine objects under an invalidation attack. Note that
the attacker can elicit a high anomaly score by opportunistically injecting a
single point at the shadow location of highest weighting. Whilst this triggers the
anomaly detection, it fails to elicit a ghost attack classification. To defeat the
mechanism, an attacker would have to effectively emulate shadows representative
of ghost attack shadows, which requires both injecting points at regions of high
weighting and creating multiple clusters with sufficient density of points (i.e. to
emulate the shadow features of ghost shadows). We define the object invalidation
attack in the following sub-section.

Object Invalidation Attack. Shadow-Catcher’s use of shadows, can incen-
tivize a new class of object invalidation attacks targeting genuine objects’ shad-
ows. We formulate this as an evasion attack (test-time) on the adversarial shadow
classification model. We consider a strong adversary who has state-of-the-art
LiDAR spoofing capabilities and knowledge of the classifier’s decision boundary
and feature representation (i.e. shadow characteristics features). Their goal is to
introduce points in the shadow region of a genuine object to change the shadow’s
characteristics and cause the classification model to misclassify a genuine shadow
as a ghost object shadow, effectively invalidating the real object.

We can evaluate the robustness of the classification according to the capabil-
ity of the adversary. In our case, we define the attacker’s capability as the total
number of points that can be injected in a target shadow region in a single point
cloud scene. We refer to this as the adversary’s “point budget”. We then define
the invalidation adversary’s budget BA as:

n0 + np = Nc × ρc, s.t. np ≤ BA (5)

where n0 is the original number of points in the shadow region, np is the number
of injected malicious points, Nc is the number of clusters after injection, and ρc
is the average cluster density after injection.

Intuitively, the invalidation adversary’s optimal strategy against Shadow-
Catcher can be defined as follows: Given a set of features for a genuine shadow,
inject the minimum number of points, np, to deceive the classifier by modifying
the combination of cluster density and number of clusters, subjected to a point
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budget BA and the configuration parameters of DBSCAN used by Shadow-
Catcher. This optimal attack strategy can be formalized as:

min np, s.t. ∃ Nc ∈ Z+| F ((n0 + np)/Nc, Nc) = 1 (6)

where F (·, ·) is the output of the classifier, which is one if an attack is identified
as a ghost and zero otherwise. As the complexity of the optimization problem
in Eq. (6) is reduced, np ∈ Z+ is a scalar and the classifier has only 2 features,
the problem can be solved using simple techniques such as the bisection method.
We evaluate the robustness of Shadow-Catcher to such an adversary in Sect. 6.

6 Evaluation

We evaluate Shadow-Catcher’s effectiveness and efficiency in detecting ghost and
invalidation attacks. We also evaluate its accuracy in estimating shadow regions,
but due to space limitations we present that analysis in Appendix B.
Ghost Object Injection for Shadow-Catcher Evaluation. Shadow-
Catcher is agnostic to the adversarial strategy and is applied on the output
of 3D object detectors. Therefore, it suffices to evaluate its response on the
products of object spoofing attacks: bounding boxes of detected spoofed objects
and resulting point cloud. Our attacks follow A’s capabilities and generate large
(cars) and small (pedestrians, cyclists) spoofed objects in front-near locations
of 5–8 in-front of the victim vehicle. To create a ghost object of a particular
type (e.g. pedestrian), we first extract the point clouds of genuine objects from
real-world point clouds (from KITTI [10]) and prune them to A’s capabilities,
the maximum physical capabilities demonstrated in the related work (200 points
within a spoofing angle of 10◦). The resulting attack trace is then added into
the target scene’s point cloud. We then remove any points behind the attack
trace (to obey the LiDAR single return signal measurement mode) effectively
recreating the result of a real-world spoofing attack. For each object type, its
attack trace is injected in 200 random scenes from the KITTI dataset, result-
ing in an Adversarial Dataset containing a total of 600 scenes (200 scenes × 3
objects injected).

Anomalous Shadow Detection. We used the Adversarial Dataset to evaluate
Shadow-Catcher’s ability to correctly detect ghost objects’ shadows as anoma-
lous and real objects’ shadows as non-anomalous. Ground truth labels of scenes
together with ghost object label were used for the bounding box generation. We
evaluated Shadow-Catcher’s scoring method using 2D shadow Regions (BEV)
and 3D Shadow Regions (Ray Height and Uniform Height with different height
values ranging from 0.1 m to 0.6 m above ground level). Our main results are
summarized in Fig. 4. A more detailed report on our evaluation is presented in
[2] due to space limitations.
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Fig. 4. ROC curves for detection of injected objects.

2D vs 3D Shadow Regions. We found that 3D shadow regions with uniform
height above the ground level outperform the other shadow regions of interest.
Noisy points (stray reflections or overhanging objects such as tree branches and
sign posts) are reduced when we only consider a small volume above ground
which only captures the LiDAR scan reflections off the ground when there are
no objects. This results in a more accurate scoring of the shadow region to detect
anomalous shadows that have points in sub-regions of high weighting.

Height Sensitivity Analysis and Anomaly Detection Threshold. For shadow
regions with uniform height above ground, we performed a sensitivity analy-
sis to find the optimal height for detecting ghost objects. The height that yields
the best AUC-ROC is 0.2 m above the ground with a score of 0.94, 0.95 and
0.96 for detection of injected Car, Pedestrian and Cyclist respectively. Shadow
regions with uniform height of 0.2 m also result in the maximum F1 Score and
Accuracy for the detection of injected objects. Finally, we parametarized the
detection threshold and found that an anomaly score threshold of 0.2 provide
the best trade-off of TPR vs FPR for all injected objects.

Utility. Overall, we found that 3D shadows, with a uniform height of 0.2m above
the ground and an anomaly score threshold of 0.2 provide the best overall trade-
off of TPR vs FPR for all injected objects. In particular, with the above config-
uration, we obtain an overall accuracy of 0.94, TPR of 0.94 and FPR of 0.069
for anomalous shadow regions due to Ghost Attacks. This is comparable to
CARLO’s performance [24], which reports a reduced attack success rate of 5.5%
for Car objects. CARLO was not evaluated on smaller objects [24], however our
experiments suggest that it will severely underperform(see Appendix A).

We also took a closer look into the sources of errors (illustration of exam-
ples in [2]). False negatives (ghost objects not detected by Shadow-Catcher)
in the dataset can typically be attributed to injected objects being implanted
in regions that are already void of points due to incomplete LiDAR measure-
ments. Note that this is due to the LiDAR’s failure to take measurements of the
ground level. As LiDAR technology gets better, our approach’s accuracy will
also improve. False positives (real objects flagged as potential ghosts by Shadow-
Catcher) are due to their shadows having points from other larger objects behind
them. Although, this may (very rarely) happen, the safety repercussions are less
important as the second object (right behind the first) will be correctly validated.
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Attack Classification. Next, we evaluate Shadow-Catcher’s ability to distin-
guish between ghost attacks and object invalidation attacks. We first show how
the features extracted from shadow regions by Shadow-Catcher’s differ between
shadows of ghost and genuine objects, and that they can be used to train an effec-
tive binary classifier. Then we evaluate Shadow-Catcher’s classification robust-
ness against a novel, strong invalidation adversary with LiDAR spoofing capa-
bilities and full knowledge of the classification method aiming to misclassify a
genuine shadow as a ghost shadow.

Feature Characteristics of Shadows. We used genuine object shadows for compar-
ison with ghost object shadows for two reasons. (a) Shadow-Catcher’s anomaly
detection might (but very rarely) incorrectly mark a genuine object’s shadow as
anomalous. Being able to distinguish between the two, acts as a second line of
validation which can correct Shadow-Catcher’s mistake in the previous phase.
This can lead to better utility. (b) An invalidation attack adversary targets gen-
uine object shadows. Thus the distinction between genuine and ghost shadows
can serve as a baseline for detecting against invalidation attacks (in the next
subsection we use this baseline to design a strong invalidation adversary).

We use the Adversarial Dataset for evaluation. Shadow-Catcher was used to
generate object shadows of uniform height (0.2 m) and then we compute the
number of 3D point clusters in each shadow region and density of the clusters
using DBSCAN (ε = 0.2, min pts = 6). The shadows are labeled (ghost vs gen-
uine) and split into a training set and a test set (80:20) to train six different
binary classifiers and evaluate their performance on the test set. As we are most
concerned with the TPR and FPR of classifiers for best utility, we use AUC-ROC
as the decision criteria to choose the model.

We found that the prevalence rate of feature combination of 0 clusters and 0
cluster density for genuine shadows is 86.2% (1899/2202) and for ghost shadows
is 4.4% (24/543). We further observe that 91.7% (2020/2202) of the genuine
object shadows have <5 clusters and 95.4% (2101/2202) have <10 clusters. Of
those genuine shadows with clusters, 91.6% (2019/2202) have average clusters
density of <10 points and 98.6% (2172/2202) have average cluster densities of
<20 points. These genuine shadow regions are opportunities for an adversary
to perform an invalidation attack. A least effort adversary will target shadows
which will likely be incorrectly marked as anomalous or force triggering anomaly
detection with a single 3D point injected in sub-regions of high importance.

We trained six classifiers and compare their performance (Table 3). We chose
these classifiers as they tend to do well for low dimensionality data. We found
that a SVM Model with polynomial degree = 2 provided the best AUC-ROC
performance in distinguishing between ghost and genuine shadows.
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Table 3. Performance metrics for shadow classifiers

Accuracy F1-Score AUC-ROC

Logistic regression 0.962 0.909 0.953

Random forest 0.969 0.921 0.938

SVM- linear 0.960 0.906 0.978

SVM-poly (deg = 2) 0.965 0.918 0.981

SVM-poly (deg = 3) 0.967 0.923 0.971

SVM-RBF 0.974 0.938 0.967

Robustness Against Evasion Attacks on Shadow Classification
Model. We further evaluate the robustness of the adversarial shadow classi-
fier against the invalidation adversary defined in Sect. 5, setting the DBSCAN
parameters as before (ε = 0.2, min pts = 6). To visualize the maximum cluster-
density combination the attacker can introduce given a budget BA (Eq. 5), we
use the Maximum Operating Curve (MOC), which shows the set of valid (ρc, Nc)
combinations on the feature space that can be reached for a given BA (we use
20, 40, 60, 100 and 200 points). In our previous experiments we found that 86.2%
of the genuine shadows have cluster-density combination on the feature space of
value 0 for both Nc and ρc = (n0 + np)/Nc. Thus, for solving the problem in
Eq. (6), we start exploring this cluster-density combination on the feature space.

Fig. 5. Scatter plot of shadow features and decision regions from SVM Classifier with
a polynomial kernel with degree = 2. Dashed lines are operating curve of adversary
according to their budget from (0,0).
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This is a very strong adversary because we assume that: (a) the adversary can
predict the optimal cluster-density combinations; (b) the adversary can identify
where the 3D points should be introduced in the environment to achieve that
combination; (c) it is feasible to introduce those measurements.

Figure 5 shows all shadow features and the decision regions from the bound-
ary of the non-linear SVM classifier (poly deg = 2). A point in the red region
is the feature combination where the classifier model will label the shadow as a
ghost attack and blue region an invalidation attack. The dashed curves represent
MOCs1 for different budgets from the origin (0,0), which is the predominant fea-
ture combination (86.2%) for all genuine shadows in our dataset. We observe that
for MOCs of up to 200 points, the curves lie within the decision region for non-
ghost shadows. Thus, an attacker needs to inject 200 or more points to evade the
non-linear SVM model which shows that our model is robust against an adver-
sary that can reliably spoof up to 200 points. With technological improvements,
adversarial capabilities can potentially improve beyond 200 points, but there are
also ample opportunities to improve Shadow-Catcher accordingly. When higher
resolution LiDARs are used, Shadow-Catcher robustness improves, as long as
adversarial spoofing capabilities do not match the LiDARs’ resolution.

Runtime Efficiency. To evaluate Shadow-Catcher’s runtime efficiency, we use
the same Adversarial Dataset. We measure Shadow-Catcher’s end-to-end anal-
ysis time for each identified object (genuine and ghost), starting from the time
Shadow-Catcher receives the 3D objects bounding box coordinates until Shadow-
Catcher labels the object. We also measure the execution time for each compo-
nent of Shadow-Catcher. Shadow-Catcher is configured to use 3D shadow gener-
ation with a uniform height of 0.2 m above ground, an anomaly score threshold
of 0.2, DBSCAN for feature extraction with ε = 0.2, min pts = 6, and our pre-
trained SVM binary classifier with a polynomial kernel of degree = 2. Shadow-
Catcher’s prototype implementation is written in Python with 1200 lines of code.
We measure the execution time on a machine equipped with an Intel Core i7 Six
Core Processor i7-7800X (3.5 GHz) and 32 GB RAM.

Table 4. Shadow-Catcher’s object processing times (in ms)

Shadow generation Shadow scoring Shadow verification Total time

Car 0.4 ± 0.3 4 ± 10 N.A. 4.4 ± 10.3

Pedestrian 0.3 ± 0.1 6 ± 8 N.A. 6.4 ± 8.1

Cyclist 0.3 ± 0.1 3 ± 4 N.A. 3.3 ± 4.1

Car (ghost) 0.4 0.1 10 ± 6 10.06 ± 20.05 20.46 ± 26.15

Ped. (ghost) 0.3 0.1 7 ± 5 10.06 ± 17.05 17.36 ± 22.15

Cyc. (ghost) 0.3 ± 0.1 7 ± 6 12.06 ± 24.05 19.36 ± 24.15

1 The MOC contains discrete values, given the set of valid combinations (ρc, Nc). For
illustration purposes, we plot the MOC as a continuous contour.
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Table 4 summarizes our results. On average, Shadow-Catcher processes
objects in a scene in 0.003 s–0.021 s. This is only a small fraction of the time
a 3D object detector takes to analyze a scene—Point-GNN has an average infer-
ence time of 0.6 s [9]. Genuine objects are processed much faster than adversarial
objects, which is important as this corresponds to most frequently encountered
cases. The longer duration taken to process adversarial object shadows is mainly
due to the feature extraction step, which is triggered when a shadow is deemed
anomalous by the shadow scoring mechanism, requiring 10.7 ms on average. The
variation observed in the total execution time, comes from the different object
sizes and the different point densities in their shadows. Notably, Shadow-Catcher
can process a spoofed car in 46.6 ms (worst case), which compared to prior work
(100 ms on average) [24] constitutes at least a 2.17x speedup. Moreover, Shadow-
Catcher’s is implemented in Python and thus, can be readily improved even
further if more efficient languages are used (e.g. C).

7 Conclusion

In this work we introduced 3D shadows, a new semantically meaningful physical
invariant for verifying the presence of objects in a 3D scene. Then we introduced
a set of new techniques embodied in an end-to-end system (Shadow-Catcher)
which leverage shadows to tackle spoofing attacks against 3D object detectors.
Our evaluation shows that Shadow-Catcher achieves 94% and 96% average accu-
racy in identifying anomalous shadows and classifying them as either ghost or
invalidation attacks. We further design a strong, novel invalidation adversary
aiming to evade classification and found that Shadow-Catcher remains robust
up to 200 points. Shadow-Catcher can analyze objects in real time (0.003 s–
0.021 s on average, a 2.17x speedup compared to the state of the art).

Appendices

A Limitation of Prior Art

Recently, Sun et al. proposed CARLO [24], a system for detecting model-level
LiDAR spoofing attacks. CARLO consists of two components. The first, Laser
Penetration Detection (LPD), serves as a quick anomaly detector to filter fake
and valid objects. Objects for which LPD is not confident in its decision are sent
for further analysis to a second component, the Free Space Detection (FSD),
which is computationally more expensive. LPD’s design intuition is that points
in the frustum correlate with occlusion patterns, and hence, uses the ratio of
the number of points behind the object’s bounding box over the total the num-
ber of points in the frustum of an object; objects with high ratio are classified
as suspicious or definitely fake. This approach uses points in the bounding box
(as part of the frustum), and for smaller objects, the ratio is small and heavily
influenced by noisy LiDAR measurements. Moreover, the approach does not take
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into account the location and characteristics of points in the region behind the
bounding box, and could be susceptible to false positives from noise artifacts.
FSD’s detection is based on the intuition that genuine vehicles have high den-
sity of points and hence, low free space in the bounding boxes as most of the
space in the bounding box should be occluded by points in front. However, for
smaller objects, this approach might be ineffective as the original space in the
bounding box is small and mostly occupied by the points. Hence there are lim-
ited regions for analysis of free space. We implemented CARLO and evaluated
its effectiveness to distinguish genuine from spoofed pedestrian objects.

LPD Evaluated on Pedestrians. To evaluate the LPD ratios of genuine and
spoofed pedestrians, we collected the LPD ratios of genuine pedestrian objects in
the KITTI dataset as well 200 spoofed front-near pedestrians (6 m in front of ego-
vehicle). Figure 6 shows the distribution of LPD ratios of genuine and spoofed
pedestrians. We observe that there is an overlap of the two distributions from 0.5
to 0.8, which presents opportunities for attackers to invoke FSD. Additionally, as
the LPD ratio’s denominator accounts for all the points in the frustum, and for
small objects the number of points in frustum is small, there is a possibility of
an attacker to inject points (within the total adversary A budget) in the frustum
to lower the ratio to trigger FSD.

Fig. 6. LPD ratio distribution of gen-
uine and spoofed pedestrian objects.
Genuine object’s 3D Shadow

Fig. 7. FSD ratio distribution of pedes-
trian objects with full and down-
sampled point cloud.

FSD Evaluated on Pedestrians. We randomly sampled 60 genuine pedes-
trian objects from KITTI and injected their point cloud 6 m in front of the
ego-vehicle to spoof a front-near obstacle. Using the same 60 pedestrian objects,
these objects’ point clouds were also down-sampled to the size of 60 points (below
adversary A’s budegt of 200 points) and were similarly injected (Point-GNN
detected all down-sampled traces as pedestrians). We then used the implemen-
tation of Free Space Detection (FSD) in CARLO to evaluate the FSD ratio
of spoofed objects with the full-sized and down-sampled point clouds. Figure 7
shows that the distribution of FSD ratio overlaps for pedestrians objects of
full and down-sampled point clouds, with the majority of them having an FSD
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ratio of 0. This shows that the approach of FSD will not result in a separable
distribution to effectively distinguish small spoofed pedestrians from genuine
pedestrians. FSD expects ghost objects to result in very high FSD ratios which
as we showed does not happen for small objects.

B 2D Shadow Region Estimation

We analyze Shadow-Catcher’s accuracy of 2D shadow region generation by com-
paring it with the 597 manually labeled shadows (see Sect. 4). We evaluate the
2D region generation separately since 3D regions build on top of it. The signifi-
cance of 2D vs 3D region estimations in the detection performance is evaluated
separately in Subsect. 6. To quantify how closely Shadow-Catcher can match
the objects’ observed shadows, we measure their Intersection over the Union
(IoU) and perform a Procrustes shape analysis. An IoU value of 1 means that
the two regions are perfectly matched and 0 means the two regions are disjoint.
Procrustes provides us with two metrics: (a) similarity of the shapes; and (b)
scale differences of the shapes [1,12,19]. For similarity, values close to 1 mean
that the shapes are identical. For scale, a value of 1 means that the size of the
shapes are identical and anything less than 1 means the ground-truth shadow
shape is smaller, and larger than 1 is the opposite.

Table 5. Aggregated correspondence metrics of all objects

IoU Similarity Scale

Mean 0.728 0.713 1.286

Median 0.760 0.969 0.970

Standard deviation 0.152 0.376 2.08

Table 5 summarizes our results across all object types. Detailed results are
deferred to the project website [2]. From the median values of the correspond-
ing metrics, it can be observed that, for more than half the objects, the com-
puted shadow matches closely with the ground-truth shadow—IoU, Similarity
and Scale values are well above 0.5 which indicates a good prediction (object
detection bounding box accuracy is commonly evaluated at IoU ≥ 0.5 [8,18]).
We do observe some variation in the results which can be attributed to mea-
surement inaccuracies and human-errors in the labeling process, and to over-
estimation of shadow areas (Illustration provided on the project’s website [2]).
Shadow-Catcher uses bounding boxes which are larger than the actual objects
and this results in larger shadow regions. However, Shadow-Catcher’s exponen-
tial decay approach to weighting the significance of 3D points in shadows (see
Sect. 5) compensates for this. This is verified with Shadow-Catcher’s overall accu-
racy in detecting genuine shadows, ghost and invalidation attacks (see Sect. 6).
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