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Abstract—Autonomous Vehicles (AVs) are mostly reliant on
LiDAR sensors which enable spatial perception of their surround-
ings and help make driving decisions. Recent works demonstrated
attacks that aim to hide objects from AV perception, which can
result in severe consequences. 3D shadows, are regions void of
measurements in 3D point clouds which arise from occlusions
of objects in a scene. 3D shadows were proposed as a physical
invariant valuable for detecting spoofed or fake objects. In this
work, we leverage 3D shadows to locate obstacles that are hidden
from object detectors. We achieve this by searching for void
regions and locating the obstacles that cause these shadows. Our
proposed methodology can be used to detect an object that has
been hidden by an adversary as these objects, while hidden from
3D object detectors, still induce shadow artifacts in 3D point
clouds, which we use for obstacle detection. We show that using
3D shadows for obstacle detection can achieve high accuracy in
matching shadows to their object and provide precise prediction
of an obstacle’s distance from the ego-vehicle.

Index Terms—Autonomous Vehicles, LiDAR, 3D Object Detec-
tion, Obstacle Detection, Automotive Security

I. INTRODUCTION

Autonomous vehicles (AVs) are increasingly being deployed

on public roads. AV’s perception of the environment they

operate in is fundamental to their autonomy, guiding their

driving decisions for safe and reliable operation. These ve-

hicles are commonly equipped with LiDAR sensors, which

collect high definition depth measurements stored in 3D point

clouds. Objects detected from the 3D point clouds are used by

AVs to map the obstacles in the driving environment, which

is vital to the safety of the autonomous vehicle, its passengers

and surroundings. Object hiding attacks have been explored in

various works [1]–[4] which demonstrate that it is possible to

generate adversarial objects that can evade object detection.

Object detection is a safety-critical function and failing to

detect an object can lead to fatal collisions.

Object hiding attacks. There are currently 2 classes of Object

Hiding Attacks. The first type is when the adversarial opera-

tions are performed on the physical (target) object itself. One

proposed method [1] is to place adversarial objects on top of

a target vehicle that evade point-cloud based object detectors,

achieving attack success rate of 80%. The adversarial objects

can be generated in a white-box or a black-box method. For

the white-box attack, the adversarial object is generated using

a gradient-based approach to minimize the confidence score

of the target object (vehicle); whereas the black-box attack

chooses adversarial objects using a genetic algorithm approach

to iterate and improve on adversarial object meshes. Cao

et al. in [2] proposed using an optimization-based approach

to generate adversarial objects that evade detection by 3D

object detectors. In [3], the authors exploited the weakness

of deep neural-networks (DNN) based detectors and proposed

an optimization-based method to generate physically realizable

adversarial objects that target multi-sensor fusion, effectively

evading both Camera and LiDAR based detectors.

The second type of object hiding attacks is when adversarial

operations are performed on the sensing modality itself. In

[4], the authors proposed using the LiDAR spoofing approach

(Object Removal Attack, ORA-Random) to inject random

points in the target’s object bounding box to displace points

in the original object’s point cloud, causing mis-detection of

the target object. They showed that ORA was effective in

damaging the performance of object detectors for front-near

objects and works well for both large objects such as cars and

small objects such as pedestrians and cyclists.

Motivation. Whilst many works demonstrate different ways to

hide objects from detection by object detectors, there is a lack

of research into how we can reliably detect such object hiding

attacks. Cao et al. in [3] showed that model-level defenses

(i.e. input transformations and adversarial training) on multi-

sensor fusion models to increase their adversarial robustness

does not effectively decrease the attack success rates. The

authors have also suggested fusing more sensor modalities

to increase the robustness, but argue that this approach does

not fundamentally address the weakness of using DNN-based

object detectors and would still be exploitable. To this end,

we develop an object hiding attack detection methodology

that leverages a strong physical invariant of a single sensing

modality (LiDAR) to provide an orthogonal and reliable

detection of objects in a 3D scene, which is robust against

object hiding attacks.

Our work. 3D shadows in LiDAR point clouds, introduced

in [6], are a physical phenomenon that is caused by occlusion

of LiDAR laser pulses by objects in a scene. The authors

leverage these shadow artifacts as a physical invariant to detect

LiDAR spoofing attacks. We observed in Figure 1, that under

object hiding attacks, the objects hidden by the adversary in

the scene, are not detected by a DNN-based object detector, but
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Fig. 1. Object Hiding Attacks from: (a) Tu et al. [1] (b) Cao et al. [5] (c) Cao et al. [3] (d) Hau et al. [4]. Shadows of adversarial objects circled in orange.

still exist and occlude LiDAR pulses to leave behind shadow

artifacts in the 3D point cloud. We leverage this observation

and propose an obstacle detection methodology that searches

a region of interest in a 3D point cloud for objects based on

the shadow artifacts found in the 3D point cloud scene. Our

proposed methodology of using shadows provides an alternate

approach to detecting objects in a 3D scene and can be used

as an orthogonal defense against object hiding attacks.

II. THREAT MODEL

In this work, we investigate the detection of unidentified

objects using their shadow artifacts in a 3D point cloud.

Locating unidentified objects can help us detect Object Hiding

Attacks, a class of attacks on AV perception that aims to cause

mis-detection of objects in the sensed environment.

Threat model. We assume an adversary A, that has the ability

to perform any of the state-of-the-art object hiding attacks.

For Class 1 Object Hiding Attacks, there are no perturbations

to the 3D LiDAR point cloud, and thus, the observation that

object shadows exist holds. For Class 2, Object Removal

Attack (ORA-Random) [4] generate adversarial objects by

perturbing the point cloud. However, the point perturbations

are limited to a short distance of point shifting along the ray

direction and do not affect the object’s shadow.

Emulating object hiding attacks. Object Hiding Attacks are

thus observed to not alter the 3D shadows of the adversarial

objects. Additionally, we also assume an adversary that does

not perturb the shadows. As such, to emulate such object

hiding attack for the evaluation of our proposed detection

mechanism, we simply ignore that these objects are detected

by an object detector and remove the labelled object from any

output. In short, we assume that the attacker has successfully

conducted an object hiding attack and the output labels do not

contain the target object.

III. USING 3D SHADOWS TO DETECT HIDDEN OBJECTS

In this work, we use the key observation that 3D shadows

are caused by occlusion of LiDAR laser pulses by opaque

objects. Adversarial objects in a 3D point cloud scene that

are subjected to Object Hiding Attacks, would not be detected

by an DNN-based object detector, but due to the physics of

LiDAR, the phenomenon of 3D shadows would still exist. The

existence of the objects’ 3D shadows in a 3D point cloud

can be exploited to locate and identify adversarial objects that

evade object detection.

3D Shadows as physical invariant. 3D shadows have been

introduced by Hau et al. in [6] as a phyiscal invariant to verify

genuine objects in a 3D point cloud scene and detect object

spoofing attacks. In object spoofing attacks [5], [7]–[9], point

cloud measurements are injected into a scene to spoof objects

that are then erroneously detected by 3D-object detectors used

by AVs. Shadow-Catcher [4] detects such attacks by using the

bounding box of objects generated by object detectors to iden-

tify a shadow region behind the detected object and inspects

that shadow region for presence of point cloud measurements,

which are indicative of a spoofing attack. The authors have

shown that 3D shadows are a strong physical invariant that

can be used to verify genuine objects. In this work, we explore

searching the scene for void regions and attributing them to

genuine objects.

3D Shadows to detect object hiding attacks. From this

observation that 3D shadows are strong a physical invariant

that can be used to verify genuine objects in a 3D scene, we

propose a methodology that identifies void regions in a 3D

scene, attributes it to objects and corroborates this with the

output of object detectors to: 1) verify genuine objects and 2)

detect potential object hiding attacks in a scene.

IV. OBSTACLE DETECTION DESIGN

We propose a methodology that searches a region of interest

in the 3D point cloud scene for void regions, and analyzes

them to either verify that the void region is caused by the

occlusion of a detected object or an unidentified obstacle

that could be an adversarial hidden object. This approach is

different from Shadow-Catcher [6] as Shadow-Catcher uses
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the bounding box of a detected object to obtain the shadow

region for analysis to detect spoofed objects. With the Object

Hiding Attack adversary we consider that the attacker aims to

hide the object and thus there is no bounding box for Shadow-

Catcher to perform analysis on – Shadow-Catcher is blind

to an object hiding adversary. As our approach is unable to

identify the objects (i.e. classify and label the object), in the

rest of the paper, we call the objects detected by our approach

as obstacles. Objects hidden by an adversary will still have

shadows in a 3D point cloud, and thus can still be detected as

an obstacle by our methodology.

Identifying shadow regions. We first define a region of

interest (RoI) to analyse for shadows. We look into the front-

near region of the ego-vehicle and define a region of width

10m and length 30m in front of it, where we analyse for

shadows and subsequently identify obstacles. Next, from the

RoI, a thin volume of the point cloud around the ground level

is extracted for analysis. The RoI volume is discretized into

cubic cells with width of 0.3m, and the occupancy of these

cells by LiDAR point measurements is checked. Cells that are

empty are clustered using DBSCAN [10] into shadow clusters.

The parameters used such as RoI size and cubic cell width

can be tuned based on the visibility requirements (i.e. a larger

RoI for greater visibility) and the resolution of the LiDAR (a

LiDAR that uses less lasers would have a lower resolution and

thus, requires a larger cell width for analysis).

Attributing shadows to their obstacles and detected object.
In a simple case where objects in a scene are sparsely

located, each shadow cluster would correspond to a single

obstacle. However, in crowded scenes, the shadows of the

objects overlap resulting in a single large cluster. In order

to distinguish the different obstacles that contribute to the

shadow, we use the center of the cells in each shadow cluster

to generate a collection of frustums to the LiDAR on the ego-

vehicle (origin coordinates of the point cloud). The points

in the collection of frustums are then checked to determine

whether they fall within bounding boxes of objects identified

by 3D Object Detectors. The remaining points that do not

fall in the bounding box of detected objects are then further

processed to identify and localize the obstacles.

Localizing unidentified obstacles. The remaining points (that

do not belong to any identified objects) from the frustums of

shadows are further processed as follows. The points undergo

clustering with DBSCAN where we get clusters of points that

according to the physics of LiDAR, contribute to the formation

of shadows and are indicative of an opaque obstacle in the

scene. Finally, we generate individual bounding boxes for each

cluster that enclose their points.

A. Example 1: Single Object in Front-Near Region

We first demonstrate the use of the proposed obstacle

detection in a simple case where the scene (Fig. 2(a)) has a

single Car object in the front-near region of ego-vehicle, and

the birds-eye-view (BEV) of the 3D point cloud in Fig. 2(b).

(a) Image of Scene with 1 Object (Car) In Front-Near Region

(b) BEV of 3D point cloud with 1 object in Front-Near Region

Fig. 2. Scene with 1 Object (Car) In Front-Near Region

We use our proposed Obstacle Detection methodology and

first search for void regions in the scene by discretizing the

RoI into cells and checking if the cells are occupied by points.

The empty cells are clustered and the result is shown in Fig. 3.

Frustums are then generated (Fig. 4(a) from the LiDAR to the

cells in the shadow clusters, where the points in the frustums

are clustered as obstacles (Fig. 4(b)). Finally, the clusters of

points, identified as obstacles in the scene, are enclosed with

bounding boxes (Fig. 4(c)).

Fig. 3. Clustering of empty cells into shadow clusters – 1 Shadow Cluster.
The origin (0,0) is the LiDAR unit on the ego-vehicle.

Our proposed detection methodology was able to accurately

detect the car in-front of the ego-vehicle as an obstacle and

in addition, picked up two other obstacles which are the road

divider and the traffic light post.

B. Example 2: Multiple Objects in Front-Near Region

Next, we demonstrate the effectiveness of the proposed

obstacle detection methodology in a scene where there are

multiple objects in the front-near region of the ego-vehicle.

The scene is shown in Fig. 5, where there are multiple cars

parked along the side of the road.

Using the Obstacle Detection methodology, the scene is

analysed for void regions in the front-near area of interest and
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(a) Frustums from Shadow Clusters to LiDAR

(b) Clusters of points in frustums

(c) Bounding Boxes of Obstacles identified from clusters

Fig. 4. Processing of Shadow Clusters into Obstacles

Fig. 5. Image of Scene with Multiple Objects In Front-Near Region.

the void cells are clustered together to form shadow clusters.

Frustums from the LiDAR to the shadow clusters are then

generated (Fig. 6(a), the points in the frustums are clustered to

obtain point clusters of obstacles (Fig. 6(b) and their bounding

boxes are also generated (Fig. 6(c)).

From Fig. 6(c), the obstacles identified using the proposed

Obstacle Detection Methodology match well with the objects

that are found in the scene (i.e. the cars that are parked along

the sides of the road).

(a) Frustums from Shadow Clusters to LiDAR

(b) Clusters of points in frustums

(c) Bounding Boxes of Obstacles identified from clusters

Fig. 6. Processing of Shadow Clusters into Obstacles

C. Summary

We have proposed an Obstacle Detection Methodology that

first searches an area of interest in the front-near region of

the ego-vehicle for void spaces that are indicative of shadow

regions. Ray frustums from the LiDAR to the shadow clusters

are generated and points that falls within these frustums are

further clustered to obtain point clusters of obstacles that

are found in the scene. From the demonstration of the 2

examples, we show that our proposed methodology is capable

of accurately localizing obstacles in a scene. Next, we perform

experiments to quantitatively measure the accuracy and effec-

tiveness of the proposed methodology in detecting obstacles.

V. EXPERIMENTS & EVALUATION

Models & Datasets. We perform our evaluation of the effec-

tiveness and efficiency of our shadow detection methodology

and object verification on the KITTI dataset [11], which

contains LiDAR measurements from scenes captured in the

real-world. Object Hiding Attacks are emulated by removing

the target object’s label from KITTI ground truth labels.

Evaluation scenarios. In our evaluation of the effectiveness

and utility of the proposed object hiding attack detection

methodology, we design experiments that aim to answer the

following research questions:

RQ1: How well does the shadow identification and verification
work in a benign scenario? In this experiment, we use benign
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scenes from KITTI and evaluate how well the shadow identi-

fication and verification procedure by measuring the accuracy

of matching shadows to ground truth labelled objects. For

each identified shadow, we sample the discretized space of the

shadow and obtain the frustum from the LiDAR to the shadow

cell. Next, the frustum is analysed for point measurements, if

there are points in the frustum, the points are corroborated

with ground truth labels to determine if they belong to a

labelled object. We measure the accuracy (True Positives) of

the shadow identification and object verification procedure by

counting the total matched objects. We define False Negatives

as labelled objects that we have missed, and False Positives

as detected obstacles that do not match the labelled objects.

RQ2: How well does the methodology identify regions in a
scene where an object is subjected to Object Hiding Attack?
We simulate Object Hiding Attacks and evaluate how well we

can localize the regions in a scene where objects exists but are

undetected by 3D Object Detectors. We use the procedure to

identify shadow regions and clusters of shadows. For each

shadow cluster, their discretized shadow space is sampled

and the frustum from the LiDAR is generated to analyse for

points in these frustums. If the points in the frustums do

not belong to any detected objects, the un-labelled points are

recorded. Then, all the un-labelled points are clustered to form

clusters of un-labelled objects. We generate bounding boxes

that enclose these clusters of points and effectively use them

to localize the object. We then match the un-labelled objects

to adversarially removed objects (from the KITTI ground

truth) and calculate the Birds-Eye-View 2D Intersection-over-

Union (IoU) of the ground truth object bounding boxes with

those generated by localizing objects from their shadows. We

measure the average IoU of all the hidden objects in the

front-near region of interest from the ego-vehicle to evaluate

the accuracy of the localization approach. Additionally, we

measure the maximum distance of the nearest edge (to the

ego-vehicle) of the bounding boxes.

A. Shadow Identification and Object Attribution

We run the proposed obstacle detection on 7480 scenes of

the KITTI dataset. For every shadow detected, the frustums are

generated and points in frustums are corroborated with ground

truth bounding boxes of objects by checking if these points fall

in the labelled bounding boxes. In the 7480 scenes, there are

10426 objects that are in the front-near region of interest. Out

of these, 10259 (TPR 98.4%) were matched, showing a high

accuracy in detecting objects. We analyzed the missed objects

(FNR 1.6%), and we found that the objects missed by the

obstacle detection are due to these objects being located too

close to the periphery of the RoI such the object is in the ROI

but their shadows fall outside the analysis region. The current

width of the RoI is chosen to be about 1.5× the width of a

vehicle lane from the center of the ego-vehicle and hence the

objects missed are at least 1 vehicle lane away, as the objects

are closer to the center of the RoI, the shadows will be picked

up and the obstacle would be detected. The width of the RoI is

a parameter that can be increased if more visibility is required.

We also recorded a False Positive Rate of 11.9%, these are

obstacles that are detected by the proposed approach but do not

match the ground-truth labelled objects. Upon further analysis

of these cases, we attribute the FPs to objects that are found

commonly in the environment such as road dividers and traffic

lights, as demonstrated in Section IV-A. Although the current

approach is unable to identify obstacles and provide object

labels, it is able to faithfully detect obstacles in a driving scene.

B. Localizing Object Hiding Attack Detection

Next, we investigate how well the proposed obstacle detec-

tion is able to localize objects and compare the localization

to ground truth labelled bounding boxes. In the 7480 scenes,

obstacles were localized using the proposed obstacle detection

and we measure the 2D BEV IoU of the predicted bounding

box with the ground truth bounding boxes of objects in the

front-near region. The average IoU for the bounding boxes of

obstacles detected in the scenes is 33.2%. The low average

IoU can be attributed to the predicted bounding boxes only

enclosing the point clusters found in the frustums (Fig. 7).

The smaller predicted bounding boxes are due to "missing

points" that can arise from the DBSCAN clustering that label

points that supposedly belonging to the object but are too far

away as noise, and hence are not included into the clusters.

(a) BEV of Bounding Boxes (Predicted and Ground Truth)

(b) Another view of Bounding Boxes (Predicted and Ground Truth)

Fig. 7. IoU example with a scene with multiple objects.

However, we observed that low IoU does not indicate that

the predicted bounding boxes are not well localized, rather

they are just smaller in size. As such, we used another
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metric where we measure the distance between the nearest

edges (to the ego-vehicle) of the predicted and ground truth

bounding boxes. This provides a metric of how well the

obstacle detection predicts the distance of the obstacle from

the ego-vehicle. We found that the average distance between

the predicted and ground truth bounding box edges to be 1.8m

(standard deviation = 2.4m), which shows that the prediction

of the obstacle is very close to ground truth labels in terms of

distance from the ego-vehicle.

C. Runtime Efficiency

We measure the runtime of the proposed obstacle detection

using a machine equipped with an Intel Core i7 Six Core

Processor i7-7800X (3.5GHz) and 32GB RAM. The average

runtime for the full obstacle detection on 7480 scenes is 36.5

s/scene with a standard deviation of 7.7 s/scene. The majority

of the processing time for the obstacle detection pipeline is

spent on the two DBSCAN operations, first for clustering

empty cells and second for clustering points in the frustums.

As such, the current implementation is not ideal for use in

real-time obstacle detection for autonomous driving decisions.

D. Summary

We have evaluated the utility and efficiency of the proposed

obstacle detection methodology. We were able to detect 3D

shadows and match them to the obstacles that caused them

with a high accuracy (98.4%). Although the proposed obstacle

detection is unable to predict the correct size of the object, it

can be used to estimate the obstacle’s distance away from

the ego-vehicle. Our current prototype implementation of our

proposed obstacle detection mechanism was found to be not

ideal for real-time processing of AV scenes and we are

planning to work on optimisations to improving its efficiency.

VI. DISCUSSION

Detection approach. Our proposed obstacle detection ap-

proach uses shadows as physical invariant of obstacles in a

driving scene to locate these obstacles in a scene. An approach

used by Autoware [12] is to perform euclidean clustering on

the points in a down-sampled point-cloud to detect objects,

where its object detection result can be verified against the 3D

object detector’s output and a rule-based criteria can be used

to determine if an object is being hidden. While augmenting

Autoware’s approach for detection is straight-forward, our

approach of using shadows as an orthogonal defense is still

useful as it provides a new perspective (looking at a physical

invariant) and opportunities for better interpreting anomalies.

Inability to identify type of object. Compared to DNN-based

3D object detection models, our proposed obstacle detection is

unable to recognize the type of the object (i.e. unable to label

the object). This is due to the use of clustering algorithms

to cluster points that are in close proximity to each other to

form clusters that represent the objects. The use of clustering

approach does not have any notion of how various object types

are represented in point cloud and hence, unable to predict the

type of object. The clustering approach that group points by

proximity also leads to the shortcoming of poor prediction of

an object’s size. Future work could look into how different

modalities or machine learning approaches can be combined

to enrich the information from shadows and detected obstacles

for improving the semantics of our predictions.

Real-time processing requirements. Processing driving

scenes in real-time is a critical requirement for autonomous

driving decision making. Due to the computational overhead of

our proposed approach, it is not suitable for real-time obstacle

detection. However, there is still merit for the current approach

to be used as an offline analysis tool that can aid in the

detection of anomalous objects. Future work can be done to

improve on the efficiency of the approach by exploring other

clustering algorithms and localization strategies to optimise the

performance. Another possible approach would be to have a

lightweight implementation that identify an obstacle’s location

by only using the shadow clusters, doing away with the need of

clustering points in frustums to generate the bounding boxes.

Shadow removal adversary. The threat model we consider

in this work assumes that the adversary only performs object

hiding attacks and does not take steps to conceal the attack

against our proposed obstacle detection. An adaptive adversary

can try to evade obstacle detection by performing LiDAR

spoofing attacks to inject LiDAR point measurements into the

void region of "hidden objects" to perturb their shadows. In

future work, we plan to investigate the robustness of using

shadows to detect obstacles against a stronger adversary that

can simultaneously hide objects and perturb their shadows.

VII. CONCLUSION & FUTURE WORK

In this paper, we leveraged the key observation that objects

from object hiding attacks leave behind shadow artifacts

in their LiDAR 3D point cloud and this can be exploited

to detect objects hidden from 3D object detection. To this

end, we propose an obstacle detection methodology that first

searches the front-near region of the ego-vehicle for void

regions in the 3D point cloud and localizing obstacles that

causes these shadows. We evaluated the performance of the

obstacle detection methodology and found that it can match

shadows to object with an accuracy of 98.4%. It is also able to

predict the distance of the obstacles to the ego-vehicle with an

average precision of 1.8m. In future work, we hope to improve

further on the utility of obstacle detection, looking into ways

to increase the precision of the localization of obstacles

and improving the efficiency to meet real-time processing

requirements. We also plan to evaluate the robustness of using

shadows for obstacle detection against an adaptive attacker that

aims to remove shadows to evade detection.
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