
BEEER:
Distributed Record and Replay for

Medical Devices in Hospital Operating Rooms

Avesta Hojjati

University of Illinois at Urbana-Champaign

hojjati2@illinois.edu

Yunhui Long

University of Illinois at Urbana-Champaign

ylong4@illinois.edu

Soteris Demetriou

Imperial College London

s.demetriou@imperial.ac.uk

Carl A. Gunter

University of Illinois at Urbana-Champaign

cgunter@illinois.edu

ABSTRACT
Medical devices in hospital operating rooms are getting increasingly inter-

connected. This enables them to download instructions and report results

with less risk of error compared to traditional manual techniques. However,

many of these devices are safety critical. Thus, any risks from cyber-attacks

can be extremely high. This paper describes BEEER, a distributed record

and replay framework suitable for environments where more than one

safety critical device is in simultaneous use. A prominent example is a

hospital operating room where a number of networked devices work to-

gether. In such scenarios, a key step to forensically analyze an incident is

understanding the causality of events produced by devices. BEEER orders

events during recording by leveraging the fact that it takes significantly

more time for a drug’s effects to come to prominence on a patient com-

pared to device-to-device communication on a local network. During replay,

BEEER uses a newly developed token mechanism to coordinate execution

of the events. We implemented and evaluated a prototype of BEEER. We

found that synchronization for short medical operations can be achieved

using Network Time Protocol (NTP). For longer operations we designed

and developed a new event ordering protocol (projection protocol) based on

vector timestamps. BEEER’s replay mechanism is efficient and therefore

suitable for forensics analyses in practice.

ACM Reference Format:
Avesta Hojjati, Yunhui Long, Soteris Demetriou, and Carl A. Gunter. 2019. BEEER:

Distributed Record and Replay for Medical Devices in Hospital Operating Rooms. In

Hot Topics in the Science of Security Symposium (HotSoS), April 1–3, 2019, Nashville, TN,
USA. ACM, New York, NY, USA, 10 pages. https://doi.org/10.1145/3314058.3314061

1 INTRODUCTION
Digital medical devices have been used in healthcare for over a decade.

Such devices transform the way clinical operations are being performed,

rendering care both more efficient and more effective. Equipped with ad-

vanced sensors and precision electronics, they can collect physiological

measurements of patients in real-time and act on the human body in re-

sponse. For example, a blood pressure cuff can control the rate by which

infusion pumps deliver pulses of the infused drug at precision levels in

the order of milliliters or even nanoliters. This can be done much more

accurately and reliably than a human could do it manually. However, if

such a device takes or delivers a wrong measurement or administers the

incorrect dosage, it can lead to the death of the patient. Another class of

devices are Implantable Cardioverter-Defibrillators (ICDs), which manage

the heart with electric pulses. In these cases too, an action or a failure to

act can cause death.

Operating Rooms are equipped with many different medical devices.

These devices commonly fall under the category of embedded systems,

Permission to make digital or hard copies of all or part of this work for personal or classroom use

is granted without fee provided that copies are not made or distributed for profit or commercial

advantage and that copies bear this notice and the full citation on the first page. Copyrights for

components of this work owned by others than ACM must be honored. Abstracting with credit is

permitted. To copy otherwise, or republish, to post on servers or to redistribute to lists, requires

prior specific permission and/or a fee. Request permissions from permissions@acm.org.

HotSoS, April 1–3, 2019, Nashville, TN, USA
© 2019 Association for Computing Machinery.

ACM ISBN 978-1-4503-7147-6/19/04. . . $15.00

https://doi.org/10.1145/3314058.3314061

since they either do not employ a user interface or if they do, it is simplis-

tic and tailored to their particular functionality. Furthermore, they tend

to run on hardware and software specific to the task the device is com-

missioned to perform. Manufacturers of such devices tend to focus on the

precision and real time guarantees the device can offer in such time-critical

environments. Unfortunately, this comes at the expense of security. The

main reason for that is because traditionally these devices are accessed only

by medical practitioners. As a result, the threat model during the design

phase of embedded medical devices does not typically include a remote

adversary or a stronger adversary with physical or proximity access to the

device. We argue that this premise is fallacious especially with the recent

advancements on the Internet of Things (IoT). Increasingly, medical devices

become interconnected and interdependent. A prime example of this is the

inter-connectivity between medical devices and clinical systems [55].

In essence, such advances introduce new attack surfaces: the software

of the devices becomes more complex to support interactions with other

devices, and essentially these devices are running commercial operating

systems; the device itself needs to implicitly trust the inputs of other de-

vices in the distributed medical operation system. At the same time, there

exists the threat of insiders: one with physical or proximity access to those

devices could purposefully tamper with them. In fact, researchers have

demonstrated that one could inject Radio Frequency (RF) pulses to the

Analog to Digital Converter (ADC) component of an infusion pump and

render it inoperable [27, 53]. Rushanan et. al. [47] found vulnerabilities with

the firmware of popular infusion pumps that are actively being utilized by

hospitals across the US, which allowed one to tamper with the dosage levels

the pump was administering. Another report stated that 56,000 adverse

event reports have been linked to issues with infusion pumps [54]. Halperin

et. al. demonstrated vulnerabilities with ICDs [20]. In each of these cases, it

is impossible for device vendors or medical personnel to sufficiently reason

about the origin of the attack.

Figure 1: Alaris IV Infusion Pump

In this paper we develop technology to allow medical devices to be

enhanced with record and replay capabilities to enable forensic analyses.

Medical devices already log local events. Table 1 illustrates an excerpt of an

event log file of the Alaris IV Infusion Pump (Figure 1) at Saint Francis (OSF)

https://doi.org/10.1145/3314058.3314061
https://doi.org/10.1145/3314058.3314061

HotSoS, April 1–3, 2019, Nashville, TN, USA Avesta Hojjati, Yunhui Long, Soteris Demetriou, and Carl A. Gunter

Table 1: Event Log of the Alaris IV infusion pump at OSF Saint Francis Medical Center.

Log Date Description Details
3/13/2015, 10:39:21 AM EXTERNAL_CONTROL_EVENT EventID = BINARY_LOG_REQUEST

3/13/2015, 10:39:19 AM EXTERNAL_CONTROL_EVENT EventID = BINARY_LOG_REQUEST

3/13/2015, 10:39:19 AM EXTERNAL_CONTROL_EVENT EventID = BINARY_LOG_REQUEST

3/13/2015, 10:38:45 AM ACTIVATE_PAGE PageID = 2

3/13/2015, 10:38:45 AM FORM_REQUEST Form = NEW_PATIENT; FormRequest = CANCEL_FORM

3/13/2015,10:38:45 AM FORM_REQUEST Form = MAINTENANCE_MODE; FormRequest = FORM_REQUEST

Medical Center. It is evident that events are logged in a coarse granularity

(e.g. on second granularity) and the focus is on outcomes (e.g. infusion pump

administered drug). The pump also generates a “malfunction” log which lists

the timestamps of each malfunction on that device. However, a malfunction

note is not enough to determine the root cause of problems: a bad reading

on another device could have caused a bad action on a patient leading to a

cascading effect on all devices connected through the patient. This limits

an analyst’s capability of determining erroneous system behaviors. In this

work we aim to equip such devices with record and replay capabilities that

can capture every system call invoked during a medical procedure.

In fact, there are a variety of systems proposed for record and replay [9,

10, 37, 45]. However, we believe that the traditional isolated record and

replay capabilities employed on individual devices are not enough since

they can only support local queries. Consider for example the following

scenario: a Patient Monitor device (PM) is connected to a patient in an

Operating Room. At the same time, an Infusion Pump (IP), is also connected
to the patient. A nurse is observing output values of the PM and inputs

values to the IP. At a point, the PM reports a bad value which triggers the

nurse to provide a wrong input to the IP. In turn the IP administers the

wrong dosage to the patient causing they death. Assuming the procedure

was captured via current methods (such as video), a forensic investigation

would involve interviewing the nurse, watching a video of the operation,

and analyzing individual log from each device. This is a cumbersome process

that also depends on human factors. With distributed record and replay,

an investigator could input the global time of death and trace backwards

all the events on all the participating devices. Granted, they could still

exist the need to interview the medical staff for more clarity. Nonetheless,

distributed record and replay as well as a query system would simplify the

investigation and provide more trustworthy results. A good analogy of our

approach is the blackbox of an airplane that can be analyzed in the case of

an unfortunate event [7]. We aim to design the blackbox of the Operating

Room.

We pose that the answer to this problem is a distributed record and replay

framework for medical devices. An important distinction in our system is

that device interaction happens through the patient’s body. In particular, it

takes a certain amount of time for a medication to have any physiological

effect on a patient, this is known as Onset time. Table 2 illustrates typical

Onset times for different types of insulin [32]. Onset times are usually in

the magnitude of seconds or even minutes because, on average, it takes 13

seconds for the drug to travel from the site of injection (usually the arm)

to the brain, where they take effect [1, 52]. Our system leverages these

observations to order events across an Operating Room, and guarantees

that the order of the events is preserved in a granularity smaller than the

minimum Onset time of all drugs.

The term Onset refers to the time that it takes for a medication to have

physiological effect on a patient. Ultimately, we are introducing the CPS

assumption. That it is, it takes less time for medical devices to communicate

compared to a medication to have any type of physiological reaction on

a patient in an Operating Room. Table 2 represents an example of Onset

time for different types of insulin. In our scenario, we are considering the

patient as a non-digital actor of the distributed system.

Our record and replay framework uses a token-based mechanism which

leverages the ordering of events at the time of recording to coordinate

the execution of events during replay. In this work, we design, implement,

and evaluate such a framework. In our framework, each medical device is

equipped with local record and replay capabilities, but also synchronizes

Table 2: Onset Action for Insulin.
Insulin Comparison Chart

Insulin Type When does it start working?
Lispro 15-20 minutes

Aspart 10-20 minutes

Glulisine 5-15 minutes

Novolin 30-60 minutes

NPH 30-120 minutes

Glargine 60-120 minutes

Detemir 60-120 minutes

NovoLIN 30-60 minutes

NovoLog Mix 10-20 minutes

with the entire distributed system. This allows a replay mechanism to deter-

ministically replay all the devices, capturing their inter-dependencies and

order of events. Such a framework would enable (1) doctors and hospital

administrators to determine the cause of a non-expected event in the Oper-

ating Room at a high-level and (2) device vendors and forensic analysts to

determine where a device, and in particular which device, was the culprit.

Contributions. Our work makes the following contributions:

• New Study. We make a first of its kind study of NTP utilization

in safety critical systems in Healthcare. Our findings indicate that

synchronization for short medical operations can be achieved us-

ing NTP, and we implemented a new event ordering protocol (i.e.,

projection protocol) suitable for longer medical operations which

involve single-threaded systems.

• Functional framework. We designed and implemented a novel token

mechanism for replaying distributed events in an orderly fashion.

This mechanism is compatible with both NTP and the introduced

projection protocol. We implemented a functional record and replay

framework that integrates NTP synchronization, the projection

protocol, and the token-based replay mechanism.

• Implementation and evaluation of a distributed record and replay sys-
tem. To the best of our knowledge, we are the first group to design,

implement, and evaluate a distributed record and replay system that

can be leveraged by doctors, device vendors, and forensic analysts

to synchronously replay devices that participated in a medical op-

eration. Our system can be used for training doctors and readily

detecting causal events in an Operating Room. Additionally, our

system could have applications in other distributed Cyber-Physical

environments.

2 BACKGROUND
Cyber-Physical Systems. It is often appealing to identify which device

has caused an issue in a distributed environment with many devices com-

municating over different channels. Given a wide variety of systems and

different architectures, there is no unified solution to identify causality in

distributed Cyber-Physical Systems. For example outage in a power-grid

is usually reported by consumers who are suffering from no access to the

electricity. This essentially could be solved by placing sensors across the

grid in every gate. Despite being helpful, this solution still cannot identify

the cause of an issue with precise granularity; this is specially a concern

when an output of one device could be used for an input of another device.

To overcome this challenge, smart grid has evolved using communication

and information techniques to provide better situational awareness [34].

For example, periodic modeling or formal verification of the architecture

has proven successful to some extent. While this approach is a step towards

providing better visibility within the smart grid-system, it still can not assist

BEEER:
Distributed Record and Replay for
Medical Devices in Hospital Operating Rooms HotSoS, April 1–3, 2019, Nashville, TN, USA

with identifying the causality of an event in other environments such as an

operating room.

Operating Room. An advanced Operating Room revolves around the pa-

tient.The most important function of such room is to help the patient in

different ways. Each Operating Room at minimum includes: a Fetal Monitor

(checks on the patient to see if his/her heart is beating), a Cardiac Mon-

itor, a Defibrillator, Oxygen tanks and Nasal Cannulas, an EKG machine

(monitors the normal behavior of the patient’s heart), an Infusion Pump

(infuses fluids), and an Anaesthetic machine (supports the administration

of anaesthesia).

Inside an Operating Room. An example of device correlation in an

Operating Room is as following: after checking the patient in, the first

device that needs to be plugged to the patient is the vital sign monitoring

system (commonly known as Patient Monitor). This device is critical since

it provides the basic yet important information about the patient. Typically,

the Infusion Pump is the second important/critical device which needs

to be functional. In an advanced Operating Room, the Patient Monitor

and Infusion Pump are communicating through the local network, this

correlation allows the Infusion Pump to infuse pre-specified drugs to the

patient in the case where his/her vital signs are not normal, such action

takes place via the readings of Patient Monitor.

For our attack scenario we are considering the following:

Setup. A patient with critical conditions has entered the Operating Room,

due to certain conditions (e.g., the device has actually been compromised

by an adversary via vulnerability in the firmware) the monitoring system

is having an abnormal reading of the patient’s heart rate. This results in

sending a signal to the Infusion Pump to infuse more than normal amount

of certain drug (e.g., Adenosine is used to normalize the heart rate). Since

the reading was faulty the infused amount will cause the patient to enter the

cardiopulmonary arrest (cardiac arrest). In this scenario, a distributed record

and replay system can help us to identify the compromised device even if

that specific device is not running anymore. Firstly, the ability to replay

both of these devices in parallel allows us to identify the causing event and

applying more forensics techniques to learn about the specific vulnerability

which has caused these issues. Secondly, we can use the replay logs towards

an educational purpose. Often in an Operating Room, medical staff do

face abnormal situations. This is either due to medical device behavior

or the special condition of the patient. Based on our previous research

and collaborations, we identified a need for a high level replay of device

interaction in an Operating Room in order to be able to train the future

medical staff.

Record and Replay mechanism. In our experiment settings, we use

an eidetic computing platform(referred to as Arnold) to record the states of

an operating system. An eidetic computer system refers to a system that

provides the ability to recall any past state that existed on the computer

and provides the lineage of any byte in a current or past state. An eidetic

computer system supports both backward queries and forward queries. A

backward query finds out where a particular state comes from and can be

used to identify the source of an anomaly event. A forward query traces

the outputs and current states that are derived from a particular state and

can be used to find out all the measurements influenced by an anomaly

event [10].

3 SYSTEM OVERVIEW
Here we present a high-level design of our system named BEEER (dis-

triButed rEcord and rEplay for the opErating Room). BEEER aims to record

an operation in Operating Room and replay it for forensic analysis or edu-

cational purposes.

Design Goals. BEEER is designed for an Operating Room where safety

critical devices operate. Such devices take one of two major roles: active

and passive. An active device is responsible to administer drugs or take an

action on the patient whereas a passive device is connected to the patient

with the purpose of taking measurements. For example, an Infusion Pump is

connected to the patient and its main goal is to administer precise dosages

of medications to the patient. A Sphygmomanometer or blood pressure cuff

applies pressure to the patient’s arm that facilitates measurement of the

patient’s blood pressure. The Infusion Pump and the Sphygmomanome-

ter are examples of active devices in an Operating Room. On the other

hand, a heart rate monitor is placed usually on the patient’s finger and

periodically takes measurements of the patient’s heart rate. The latter is an

example of a passive device in an Operating Room. In addition, there is a

vision of connected medical devices. That is, the industry and academia are

now considering situations where such medical devices would be able to

communicate with each other [6, 12].

The heterogeneity of such medical devices and the fact that they are

manufactured by different vendors, generates the need for solutions that can

help vendors identify malfunctioned or compromised devices. Furthermore,

physicians are also interested in automated solutions that can help them

analyze an operation for educational purposes. BEEER is a distributed

system that aims to fulfill these needs. To achieve that, it needs to take

precise recordings of system events on each of the medical devices in an

Operating Room. More importantly, BEEER needs to be able to synchronize

these local events on a global timescale. For example, it should be able

to help device vendors and physicians to distinguish and identify events

that caused another event. Consider for example a scenario where an active

device (A) and a passive device (B) are connected to a patient. An anomalous

or unexplained reading by B could be caused by a malfunction of B or more

interestingly by an action of A. BEEER is able to help identify events on A

that happened before the spurious reading on B. Such information could be

critical in identifying the culprit.

BEEERArchitecture. Figure 2 illustrates the high level design of BEEER.
Medical devices in the Operating Room (D1, D2, D3 in the figure), run a

BEEER recording session in parallel with their normal operation. The BEEER

recording component captures local system events such as system calls and

updates a log file. The BEEER local recording component also runs a syn-

chronization algorithm, essential for ordering events in a global timeline.

BEEER synchronization can be configured to run either NTP (see section 4)

or a projection protocol (see section 5) to order the events across the

BEEER distributed system. BEEER assumes the presence of a Master device
which facilitates synchronization. The Master device is also responsible

for merging the local logs at the end of an operation (see section 6.1) and for

replaying the devices for analysis in an interactive manner. BEEER enforces

the ordered execution of the distributed events using a novel token mecha-

nism (see section 6.2.) The Master should also be able to answer queries at

different semantic levels to be useful for doctors and vendors.

Implementation. BEEER’s local recording component is an extension

of an eidetic system, named Arnold [10]. We have extended Arnold to use

NTP synchronization or the projection protocol to generate local timestamps

for each event. We extended Arnold’s replay mechanism to allow for replay

of recordings of multiple devices on a single machine. BEEER’s replay will

merge the local device logs at the end of an operation. Merging logically

orders the events across the whole system based on their local timestamps.

Arnold is limited in some cases, for example, its replay mechanism is not

interactive. To overcome this issue, we have attached an interactive tool to

the replay mechanism [29]. This will essentially assist with displaying each

step of the recording during replay.

Figure 2: BEEER high-level architecture

HotSoS, April 1–3, 2019, Nashville, TN, USA Avesta Hojjati, Yunhui Long, Soteris Demetriou, and Carl A. Gunter

4 DEVICE SYNCHRONIZATION
BEEER requires to be able to synchronize events across multiple medical

devices. For example we need to know if a specific action of D1 on the

patient happened before D2 took a measurement from the patient. This

section will elaborate the device synchronization process on BEEER.

To this end BEEER supports two synchronization approaches: (1) using

local NTP and (2) running a projection protocol which projects all events to

a master timeline.

Clock synchronization with NTP. BEEER has the capacity of using

NTP (Network Time Protocol). During our experiments (sec 7), we identified

that both NTP and PTP (Precision Time Protocol) are not suitable for our

environment. NTP is widely used in commercial operating systems, thus we

decided to utilize this protocol for clock synchronization between different

medical devices in an Operating Room. BEEER employs a master-slave

synchronization since there is already a dedicated device for the replay

operation. However, naive use of NTP that requires an external NTP root

server would entail allowing devices in an Operating Room to access the

Internet. This would greatly increase the attack surface. In such a scenario,

one would need to include into the adversary model a remote adversary,

since even a small bug or other vulnerabilities can be potentially exploited by

a remote adversary to get access to the Operating Room’s local network and

further compromise other devices in the network. To address this, BEEER

uses a local NTP where all medical devices synchronize with a local root

machine. Our prototype uses the replay machine as the NTP root server,

but, in theory, any trusted machine could assume that role.

BEEER wraps Arnold’s record command at the clients, to enable NTP

synchronization with the Master clock every 10 seconds, which allows it to

minimize clock drift across machines. Note that NTP synchronizes a node’s

clock with the Master by calculating that node’s clock offset with respect to

that of the Master. In particular, if o
real

is the real offset of the client’s clock,

ontp is the one calculated by NTP, L1 is the latency of sending a message

from the client to the Master, and L2 is the latency of sending a message

from the Master to the client, then it can be shown that the error in the NTP

offset calculation has the following upper bound due to network delay:

|o
real
− ontp | < |

L2 − L1
2

|.

To guarantee ordering, the following must hold in the NTP case. Let

eA = |oreal,A − ontp,A | be the error in the offset calculation at machine

A, eB the error at machine B, tA the global time an event is recorded at

machine A and tB the global time an event is recorded at machine B, and

tA < tB . Then NTP can guarantee ordering if:

eA + eB < tB − tA .

This ensures that when the clients are synchronized, the worst case

combined error is not enough for the two events to be ordered differently.

If the difference between the offsets ontp on client nodes is large, then mul-

tiple recorded distributed system calls might be timestamped in the wrong

order. Thus it is critical to synchronize as frequently as possible to limit

the damage in the ordering caused by the clients’ clock drifts. Furthermore,

if the message delay is too large, then the error in the offset calculation

at each client can be very high. This also results in unordered events. For

reliable emergency room networks, BEEER offers the option of running

a projection protocol instead of NTP for distributed event ordering. One
problem at this stage is the overhead of NTP clock synchronization. NTP has

a large overhead for clock synchronization, even when the synchronization

is set to 10 second at minimum it might take 120 seconds to update the local

clock, this is due to the architecture of NTP and its high dependency on the

local network. NTP clients, by default synchronize within a 64s (minimum)

interval and gradually increase to 1024s (maximum). However, this could

entail a large enough clock drift that would make it hard to confidently

order events at the system call granularity. On the other hand, our new

event ordering protocol does not introduce any overhead since it doesn’t

require frequent synchronization during recording.

5 PROJECTION PROTOCOL
As we have mentioned, NTP can be used for short operations. In fact, it

might be the best choice due to its simple deployment enabled by the avail-

ability of helpful libraries in most operating systems. For longer operations,

the NTP protocol will require multiple synchronizations during an opera-

tion. However, it is enough for doctors, manufacturers, and forensic analysts

to know the order that events happened in during an operation. This sim-

ply means that there is no need to use NTP for synchronization during

recording [28]. For example, it would be sufficient to know that the sphyg-

momanometer increased the pressure on the patient’s arm before the blood

oxygen sensor started recording higher values. We take advantage of this

observation and use vector timestamps, and developed a projection protocol
(Algorithm 1) specifically for Operating Rooms to order events on BEEER.

In an Operating Room, causal ordering matters more than total ordering.

While it is acceptable to mis-order some unrelated events, the recorded logs

should preserve all the potential causalities between the events on differ-

ent devices for forensic analyses. However, the traditional causal ordering

in distributed systems is not enough under the scenario of an Operating

Room. In an Operating Room, most devices act independently and as such

any local recording would be considered concurrent with another device’s

local recordings. Although there is no explicit communication, devices can

communicate implicitly: a device can perform an action on a patient which

can stimulate a physiological reaction captured by a second device. That

is, an event taken on one device can cause another event to be taken on a

different device without explicit message communications. We name this

type of causalities the implicit causalities. In the BEEER projection protocol,

we would like to be able to reason about both the traditional causalities in

distributed systems and the implicit causalities taking place uniquely in an

Operating Room. To guarantee the correct ordering, we make the following

assumptions about the system:

Reliable and Ordered Message Delivery. BEEER assumes that there

is no message loss and all the messages in the same channel are delivered in

the same order as they are sent. This is a common assumption for distributed

systems, and it can be guaranteed using the TCP protocol.

CPS. BEEER makes a Cyber Physical System assumption. That is, it

assumes the time it takes for a device action on a patient to instigate a

physiological reaction on their body (tϕ) and for that reaction to be sensed

by another device (ts), is strictly larger than the network latency (L) be-
tween any two devices in the system. That is, tϕ + ts > L. This isn’t a
strong assumption since it often takes several seconds or minutes for a

physiological reaction to take place in a human body while the network

latency between devices on the same local network is much smaller. Table 2

gives an overview of the time required for different types of insulin to have

any type of physiological effect on a patient [32]. The term Onset refers
to the time that it takes for a medication to have physiological effect on

a patient, we take advantage of the long Onset time to validate the CPS

assumption.

Based on the assumptions we formulate the requirement of our protocol

as follows:

Local Causality. If A and B are two events on the same device, where

A happened chronologically earlier than B , thenA should be ordered before

B in the log.

Message Causality. If A denotes the event of sending a message from

device D1 and B the event of receiving that message on another device D2,

then A should be ordered before B in the log.

CPS Causality. If A and B are two concurrent CPS events on two differ-

ent devices D1 and D2, and the time difference between event A and event

B is greater than a threshold tcps, then A should be ordered before B in the

log.

The local causality and message causality requirements come from the

definition of causal ordering in distributed systems. When tcps equals to the
network latency L, the CPS causality requirements are enough to capture

all the implicit causalities in a system satisfying the CPS assumption.

In the CPS causality requirement, a CPS event refers to an event that

potentially makes or reacts to physiological or environmental changes.

BEEER:
Distributed Record and Replay for
Medical Devices in Hospital Operating Rooms HotSoS, April 1–3, 2019, Nashville, TN, USA

For example, it could be an injection into the patient or a measure of the

patient’s heart rate. In the Projection Protocol, we categorize all events
except for message sending and receiving as CPS events. This categorization

can be further elaborated given background knowledge of the applications

running on the devices, but categorizing more events as CPS events does

not introduce error into the Projection Protocol.
To satisfy the local causality requirement and the message causality

requirement, BEEER uses vector timestamps to order the events. However,

ordering according to vector timestamps does not satisfy the CPS causality

requirement because vector timestamps rely on communication across de-

vices to identify causality. BEEER addresses this problem in the following

way: all events - (which are in essence all system executions and messages)

are projected on a single machine which acts as a Master node. Projections

happen through BEEER messages which include the event’s vector times-

tamp, the event id, and the device id. Upon the receipt of the message, the

Master node appends a Master timestamp to the BEEER message and stores

the messages in an append log. By doing this, we ensure that events can

be meaningfully ordered when the operation is complete, by merging the

individual devices record logs — an operation facilitated by the Master ap-

pend log. During the merging, the events are first ordered with their vector

timestamps. Events that are concurrent according to vector timestamps are

ordered with their Master timestamps.

BEEER messages can be sent on every local action, send message, and

receive message events. However, since CPS causality only exists between

CPS events, we can optimize the protocol in practice by sending BEEER

messages only after a CPS event. In this case, the BEEER message should

include all previously unprojected local events and their vector timestamps.

Upon the termination of a device, a final BEEER message is sent to report all

the previously unprojected local events. The high-level logic is summarized

in Algorithm 1.

Algorithm 1: BEEER Projection (Devices)

1 if a local event e happens at Di then
2 Di increases its i -th vector timestamp by 1.

3 if e is a CPS event then
4 Di sends a BEEER message to the Master node.

5 end
6 end
7 if Di receives a message from Dj then
8 Di updates its j -th vector timestamp according to the message.

9 Di increases its i -th vector timestamp by 1.

10 end

The ordering of events given by the Projection Protocol satisfies

the three causality requirements: local causality, message causality, and

CPS causality. The local causality and message causality requirements are

satisfied by the vector timestamp, therefore it is sufficient to prove the

satisfaction of the CPS causality requirement.

Suppose A and B are two events taking place at different devices, and

there is a CPS causality between A and B . That is, event B happens due

to a physiological reaction caused by event A. Let ta and tb be the global

time that A and B take place, and δa and δb be the network delay of the

associated BEEER messages. L is the maximum network latency between

devices. Therefore, the master node would receive the BEEER messages

from A and B at ta + δa and tb + δb separately. According to the CPS

assumption, we have

δa ≤ L < tcps < tb − ta

Moreover, because the network latency (δb) is always greater than 0:

(tb + δb) − (ta + δa) = (tb − ta) − δa + δb > 0

That is, the BEEER message of event B always arrives later than the BEEER

message of event A. Therefore, the ordering of A and B according to the

Master timestamp is always correct, which satisfies the CPS causality re-

quirement.

To demonstrate the effectiveness of the Projection Protocol, we study
a simple Operating Room setting as shown in Figure 3 with three devices:

a Pulse Oximeter (PO), an Oxygen Sensor (OS), and a Blood Pressure Cuff

(BPC). The vector timestamp associated with each local event indicates the

local causality and message causality between each events, but they cannot

reflect the CPS causality. For example, the Pulse Oximeter has no message

exchanges with the other two devices, therefore the events taking place on

it are considered as concurrent with all other events. However, the Pulse

Oximeter can have implicit communications by measuring the physiologi-

cal reactions on the patient, which are potentially caused by actions of the

other two devices. For example, if the Blood Pressure Cuff (event J) applies

pressure to the patient’s arm via inflating, this would result to have no blood

flow to occur through the patient’s artery. Consequently, the Oxygen Sensor

(event G) and the Pulse Oximeter (event D) will have different readings as

a result of physiological changes on the patient’s body. Although event J

([0, 0, 3]), G ([0, 3, 1]), and D ([4, 0, 0]) are concurrent according to their

vector timestamps, the Projection Protocol should guarantee that G and

D are ordered after J to correctly record the causalities. Since event G and

event D’s BEEER messages always arrive later than the BEEER message

of J’s, the Master timestamp ensures the correct ordering of these three

events. However, note that although ordering provided by the Projection
Protocol preserves all the causalities in the events, not all ordered events

are causal. In the example, B and E are concurrent on different devices,

but B is ordered after E by the Projection Protocol. Since not all events
with time difference greater than tcps are causal, timestamps do not con-

tain enough information to distinguish between CPS causal events and

concurrent events occurred at different time. After the logs are merged be-

tween the devices, a hospital staff can infer whether there is a real causality

between the ordered events based on additional information in the log.

Figure 3: BEEER Timestamp Projection Example. The green dots in
the figure represent the local events happening at each device, in-
cluding sending messages, receiving messages, and taking actions
or measurements. The red dots represent the sending and receipt of
BEEER messages. The black solid arrows indicate message causali-
ties, the black dashed arrows indicate CPS causalities, and the blue
arrows indicate transmission of BEEER messages.

Determining the Onset time is challenging as it can vary between humans

with different physiological characteristics. However, we can design ex-

periments to measure the communication between different devices in an

Operating Room. This can provide us with a conservative estimate of the

network latency we can tolerate. In this experiment we do that for a heart

rate sensing device. Determining tϕ is challenging as it can vary between

humans with different physiological characteristics. However, we can design

experiments to measure ts for different devices.

In particular, we built a heart rate sensing device that periodically reads

the heart rate of a patient. The heart rate sensing device is composed of

a commodity heart rate sensor that we connect to an Arduino board, our

Arduino software application, and amachine running local report and replay.

The sensor periodically sends the measured heart rate signals to the chip,

and the chip transmits this data to a USB port of the connected computer.

HotSoS, April 1–3, 2019, Nashville, TN, USA Avesta Hojjati, Yunhui Long, Soteris Demetriou, and Carl A. Gunter

We further wrote a program on a BEEER recording machine that takes this

data and displays it on the screen.

Figure 4 shows the intervals (in milliseconds) between two consecutive

system calls in the Heart Rate Sensing Program. The value for System

Call Intervals for average case, standard deviation (std), and minimum

value are; 57730, 433974, and 251 ms respectively. These values give us

a conservative estimation of the network delay (L) we can tolerate with

the CPS assumptions when the projection protocol is used for event

ordering. Evidently, the time between two consecutive events (ts) is long
enough to transmit a message between two devices on a trusted local

network and thus our CPS assumption holds in this setting.

With the Projection Protocol the resulting Master append log is

equivalent with the log merging output from recording with NTP synchro-

nization. Thus, it is compatible with BEEER’s replay mechanism. Neverthe-

less, based on our experiments, we observe that knowing the casual order of

events can eliminate the need for NTP protocol. For the purpose of reducing

the synchronization overhead in longer operations we do not need to know

the actual time an event has happened, this eliminates the need for NTP

protocol.

Figure 4: System Call Intervals for Heart Rate Sensing Sensor

6 REPLAY SCHEDULING
At the end of the medical operation, BEEER collects the local device logs

and transmits them to the Master replay machine. There, it performs a log

merging operation to create a global ordering of events. BEEER uses this

ordering along with a token mechanism to enforce partial ordering of events

during the replay operation.

6.1 Log Merging
When the logs are collected from the individual devices, BEEER will parse

them to generate a token queue. The token queue will determine which

event (system call) will be replayed in which order. In the case of the pro-

jection ordering, the Master will examine its event ordering and, the vector

timestamps and event details at the individual device logs to determine a

logical start and end time of events. In the case of NTP use, the local times

are trusted to delineate the global time.

During log merging, there are four cases, and they are symmetrical

in terms of event ordering as depicted in Figure 5. In Case D, events at

different machines start and end at the same time. In case C, an event

starts and finishes on one machine before any event on another machine

starts. However, in Case B, when an event starts on machine 1 and before

it finishes, an event on another machine starts and finishes. Also in Case

A, when an event starts on machine 1 and before it finishes, an event

on another machine starts. The second event finishes after the event on

machine 1 finishes. BEEER treats case D as fully concurrent events and will

allow machine 1 and machine 2 to execute those system calls in parallel.

Note that the execution need not be concurrent as well. This is because

there is no loss of causality during replay. In Case C, BEEER will force

deterministic execution of events. For example, it will not allow machine

Figure 5: Log Merging: the different cases BEEER considers

2 to start replaying before the execution on machine 1 finishes. In cases A

and B it is much harder to guarantee that the replay will follow the exact

execution timing of the recording. Note that replaying a system call, does

not necessarily take the same time as during recording. This is because

Arnold caches the input for the system call which is fed during replay. In

those cases BEEER guarantees that causal effects will be captured in the

following way. BEEER uses a causality threshold (tc) which determines at

system call granularity whether a system call on machine 1 could potentially

influence a system call on machine 2. In particular if the difference between

the start time of the system call on machine 1 and the start time of the

system call on machine 2 is less then tc , BEEER reduces case A or B to case

D. Otherwise, if the difference is equal or larger than tc , this means that a

causal effect could have taken place and as such BEEER needs to show that

during replay. Thus, in the latter case, BEEER reduces A or B to C.

More formally, let ts,1 be the recorded start time of an event on machine

1, ts,2 be the recorded start time of an event on machine 2, ts,2 > ts,1 since
we are considering cases A and B, and tc is the causality threshold. BEEER

reduces case A or B to case D if ts,2 − ts,1 < tc and to case C otherwise.

Setting tc is critical to ensure answering causality queries by doctors

and forensic analysts. To capture causality, tc needs to be greater or equal

to the least time it takes for an action by a device on a patient to cause a

physiological reaction to her body which will be sensed by a second device.

For example, there are guidelines for doctors and nurses that dictate such

reaction times per drug, which can be utilized by BEEER to automatically

determine tc . However, tc should also be greater or equal to the minimum

network latency observed in the system during recording. The latter is

useful to guarantee reflection of causality during replay when medical

devices have communicated directly with each other. If there is no such

communication the former condition is sufficient.

More formally, let tCPS be the minimum Onset time of all drugs. Let tc
be the causality threshold and L be the one-way network latency between

two medical devices. Then tc must be: tc

tc ≤ min(tCPS),

and

tc ≥ L.

The first condition is always necessary while the second is needed only

when devices communicate with each other. However, in that case, since,

according to the CPS assumption, tc ≤ L < min(tCPS), the second condition
is enough for this case.

Log Merging Algorithm. Our log merging algorithm is illustrated in

Algorithm 2. Initially it sets a pointer to the first log line of every log. Then

it compares the pointed lines to figure out the order case (see Figure 5). In

case D, the algorithm stores sequentially all fully concurrent events that

have started and ended before the remaining pointed lines. Their pointers

are increased to their next individual log lines. In case C, the oldest event

is listed and its line pointer is increased. In the worst case the algorithm

will encounter only case C. That means its time complexity would be linear

BEEER:
Distributed Record and Replay for
Medical Devices in Hospital Operating Rooms HotSoS, April 1–3, 2019, Nashville, TN, USA

with respect to the sum of all log lines:

O(

N∑
i=1

mi),

where mi represents number of lines in the ith log, and N represents

number of logs. The space complexity is always O(
∑N
i=1mi) since we need

to store one line per event.

Algorithm 2: Log Merging

Input: N recording logs

Output: A log with all distributed events ordered

1 ttemp ← 0;

2 GlobalEventList← 0;

3 initLogPointers(pointers [N]);
4 while not at the end of all logs do
5 switch compareLogLines (pointers [N]) do
6 case A or B do
7 if ttemp < tc then
8 foreach line in pointers do
9 GlobalEventList← line, D pointers [index of line]++

10 end
11 end
12 else
13 GlobalEventList← oldestLogLine (pointers), C pointers [index of oldestLogLine

]++

14 end
15 break;

16 end
17 case C do
18 GlobalEventList← oldestLogLine (pointers), C pointers [index of oldestLogLine]++

break;

19 end
20 case D do
21 foreach concurrent line in pointers do
22 GlobalEventList← line, D pointers [index of line]++
23 end
24 break;

25 end
26 end
27 end
28 return GlobalEventList

6.2 Scheduling with Token Distribution
During replay, amastermachine enforces orderly execution of events using a

tokenmechanism. Next, we describe BEEER’s token generation algorithm
and token scheduling.

Token Generation. The token generation procedure is illustrated in

Figure 6. The log merging output is traversed linearly and events are added

in a FCFS (First Come First Served) Token Queue (TQ). Whenever a case C

entry is encountered, a new token is added to the queue. However, when a

series of case D events are encountered, a queue node fills up with multi-

ple sub-tokens. In our prototype implementation the sub-tokens are stored

in a hashmap using the device id as the key. Note that a series of fully con-

current case D events in the log merging output could follow another series

of fully concurrent events. BEEER distinguishes between them by assigning

a monotonically increasing integer shared between fully concurrent events.

Case C events always have unique such ids. The space complexity of the

TQ is again O(
∑N
i=1mi) since we store one token (or sub-token) per line in

the global log.

Token Scheduling. During Replay, executors take on the task to re-

play the recording logs of each medical device. There is a 1:1 relationship

between medical devices and executors. The Master node takes the role of

the scheduler. In particular, every executor is only allowed to execute a

system call if it has been granted the appropriate token. Figure 7 depicts

the scheduling protocol.

An executor asks the Master scheduler for a token before it attempts to

execute a system call. If the request matches the first token in the queue, the

scheduler sends the token to the executor which proceeds with the replay

of that system call. At the same time, the scheduler moves the token (or

sub-token in case D) from the TQ to an Active Token Queue (ATQ). As

long as the ATQ holds a token, no further tokens are being granted. This

ensures replay scheduling of case C (see Figure 5). Note that waiting for the

Figure 6: BEEER token generation.

Figure 7: BEEER Distributed Replay with Token Scheduling.

end of the previous system call before executing a system call of another

machine is important. Consider for example the case where we grant a token

to machine 1 and before it finishes execution we grant a token to machine

2. Even though we granted the tokens in order, there is no guarantee that

their execution will follow the same order.

To delete a token (or sub-token) from the ATQ, the scheduler needs to

know the end time of a replay execution. A straightforward way to do this

is to have the executor send a message to the scheduler. Note, however,

that when a system call is executed, the next action that an executor takes

is to replay the next system call. Thus it will need to send a message to

the scheduler requesting a new token. BEEER executors only need to send

token request messages since such a message implies the finished execution

of the previous system call.

When the TQ has a node with sub-tokens first (case D), requests from

multiple executors can be served concurrently. For example, if TQ’s first

node has a sub-token for Executor 1 and Executor 2, then the scheduler can

grant a token to both in whatever order the request is received. This does

not violate causality since sub-tokens represent events that are concurrent

and as such their order of replay can be arbitrary. Again, the sub-tokens are

moved to the ATQ once granted but they remain part of the same ATQ node.

Any sub-token not part of the original node or token cannot be granted

unless the ATQ node is fully emptied.

Optimization: Token Batching. BEEER’s token scheduling can guar-

antee ordering for case C and case D. However, there is a large amount of

messages that the scheduler needs to exchange with the executors. To make

things worse, the executors need to wait after every system call execution

for a new token. Consider for example the scenario where the TQ holds

n tokens for machine 1 consecutively, followed bym tokens for machine

2 also consecutively. In this case, the scheduler needs to exchange 2n + 1
messages with machine 1 and 2m + 1 messages with machine 2. Assuming

delay d to deliver a message, machine spends (2n + 1) × d time negotiating

tokens.

BEEER alleviates this using batching: BEEER traverses the TQ queue and

merges consecutive tokens of case C destined for the same device. It further

HotSoS, April 1–3, 2019, Nashville, TN, USA Avesta Hojjati, Yunhui Long, Soteris Demetriou, and Carl A. Gunter

Figure 8: Application Performance with Arnold recording (w) and
without (w/o) recording.

adds an expiration number equal to the number of tokens concatenated.

The latter allows executors to continuously use the token until it expires.

In the previous example, this would result in machine 1 exchanging just 3

messages
1
and thus spending 3 × d time negotiating tokens. These are the

“Token Request”, “Token Granted”, and the last “Token Request” indicating

the end of replay on that machine.

7 EVALUATION
We have implemented BEEER on a number of machines connected on the

same network. For our performance experiments, the BEEER clients and

the BEEER Master are individual machines. The BEEER Master runs the log

merging, token generation, and is responsible for granting tokens to clients.

The replay executors are also located on the BEEER clients. The BEEER

clients are configured to synchronize using local NTP, we have purposefully

used NTP since it is commonly available in current medical devices. Note

that with this scenario our replay performance results include the penalty

of the network latency paid during the token protocol messages. In reality,

the executors will be placed on the same machine as the scheduler. Thus

the message latencies will be smaller in practice. Our evaluation is focused

on the record and replay performance of the system.

7.1 Recording Performance
In this set of experiments we measure the execution time of different pro-

grams (heart rate sensor, ls, wget). For each of the benchmark programs,

we measure the duration of each command/program under free settings:

running without recording, recording without synchronization, recording

using NTP for synchronization, and recording with projection protection.

We repeat each experiment 20 times to measure the average and standard

deviation of the execution time. For the experiment with the heart rate

sensing device, the program measures the patient’s heart rate several times

within one execution. We estimate the time for a single measurement with

tS =
tT
m . tS is the time for a single measurement; tT is the total execution

time of the program;m is the number of measurements the program takes.

Figure 8 illustrates the average time it takes for the heart rate system

to report a measurement when recording is enabled (w) and when it is not

(w/o). We compare that with respective experiments on ls and wget.
It is evident that the heart rate system requires at least one order of

magnitude more time to take a measurement compared to a local and a

networking program to complete. We also observe that recording (using

state of the art technology) is an expensive process. However, this does not

have an adverse effect on medical devices that sense or act on the human

body. Nevertheless, there might be some devices now or in the future that

require more fine-grained recording. BEEER can utilize advancements in

single machine recording technology to accommodate such scenarios. Note

that we consider single machine recording to be out of scope for our work

since we focus on coordinating such recording and replaying across multiple

machines.

1
Note that this is the best case for batching. In the worst case, batching has no effect.

Next, we measure the execution time of program ls on a system with

no recording capabilities, on a system with single machine recording, on a

system with BEEER recording using NTP for synchronization, and on a sys-

tem with projection protocol recording. In the case of recording with NTP,

the devices use NTP to synchronize once before the operation starts. Once

NTP finishes synchronization then the devices start their operations which

are recorded by BEEER. Figure 9 illustrates BEEER’s recording overhead

due to NTP. As expected, the performance of BEEER recording with NTP

adds an additional initial cost to single machine recording which is added

by the NTP synchronization protocol. NTP for clock synchronization might

be sufficient for short operations, because it needs to happen once before

the operation starts. In the case of longer operations due to higher clock

drifts we would require multiple NTP synchronizations. However, as it is

evident from the evaluation, the NTP synchronization is long enough (64

seconds on average) to cause missing important interactions. One solution

to this issue is utilizing NTP asynchronously, which could be achieved on

medical devices where multithreading is supported. Unfortunately neither

the medical device in our experiment, nor many medical devices deployed

in hospitals are able to support multithreading. To overcome this issue, we

developed the projection protocol which is inspired by vector timestamps

(see section 5).

This demonstrates that while NTP is an obvious option in synchronizing

the devices, yet it is not practical for medical devices since it will be missing

a large number of events. However, when the Projection Protocol is used
instead of NTP, BEEER recording adds no additional overhead compared

to single machine recording because sending the projection messages does

not interfere with the recording process.

Figure 9: Application Performance of BEEER recording compared
to Arnold and w/o recording.

7.2 Replay Performance
In this set of experiments we demonstrate the overhead imposed by BEEER’s

token scheduling for replay. In particular, we measure the time it takes to

record and replay program wget fetching a file of 100MB on a single record

and replay machine (Arnold), and compare it with the time it takes to record

and replay the same program in BEEER, without batching enabled and

with batching enabled. Figure 10 shows that BEEER adds a non-negligible

overhead when run without batching since on every system call replay the

executor needs to stop and acquire a new token. However, with batching

enabled the executor needs to acquire a token once and can replay the

program to completion.

To evaluate the effect of BEEER replay overhead on top of Arnold, we

focus on the log merging operation. In particular we measure the number of

tokens generated for the ls program run on two different machines. We first

record ls with a small time difference between the machines to interleave

their global times during log merging. We call this the common case. We

BEEER:
Distributed Record and Replay for
Medical Devices in Hospital Operating Rooms HotSoS, April 1–3, 2019, Nashville, TN, USA

repeat the above starting the recording of the second ls program after

the first has been completed. We call this the deterministic case. This case
is useful to illustrate the maximum benefit of batching for ls. The initial
record log of ls contains 77 events and thus without batching BEEER will

generate 77 tokens. Figure 11 illustrates the effect of batching. Intuitively,

batching greatly reduces the number of tokens and thus the messages and

stop-and-wait times for executors during replay will be reduced as well. This

is simply due to collectively sending the tokens where the overhead will be

significantly reduced when compared to sending each token individually.

Figure 10: Performance of BEEER for a single machine, single pro-
gram w/ and w/o batching when compared to Arnold replay of the
same program.

8 RELATEDWORK
Record and Replay. Recording and replaying program execution has been

of interest for many years [5]. Deterministic record and replay has been

widely studied on various platforms.Whole-system record and replay allows

reproduction of all low level system states such as register and memory

addresses, and often relies on processors [4, 9, 10, 11, 13, 22, 36] or vir-

tual machines [14, 50]. Eidetic system [10] can deterministically replay a

multiprocessor system. Arnold, divides the system into different groups of

replaying processes, records the dependencies between these groups, and

uses model-based compression to reduce the overheads. While Mozilla rr

provides a comprehensive set of features, it does not support multiprocessor

record-replay [42]. ReTrace [50] uses the deterministic replay technology of

VMware hypervisor, and captures only non-deterministic events to reduce

time and space overheads. Mobile record and replay such as VALERA [23]

deals with the complicated environment of smartphones. Instead of focusing

on system calls, VALERA records and replays sensor and network input,

event schedules, and inter-app communications. Application-level record

and replay solutions, record the states of a single application instead of the

whole system [2, 18, 40]. For example, Bugnet [40] records the initial archi-

tectural state, register, and program counter updates, and all load values

used during execution.

Distributed record and replay focuses on the record and replay of ap-

plications in a distributed environment. For example, Friday [18] targets

the problem of debugging and profiling large-scale distributed applications.

It considers distributed problems such as routing consistency in overlay

networks and temporal state abnormalities caused by route flaps. Similarly,

Jockey [48] and Bugnet [40] achieve the same goal. Most of these systems

assume a synchronized clock or a virtual logical clock to achieve consis-

tency in distributed report logs. However, maintaining such a clock is a big

challenge in Operating Rooms.

Synchronization for Safety Critical Systems. In safety critical sys-

tems synchronization between disperse devices is an important task. For

example in 2003 the northeast of U.S. suffered a blackout for approximately

Figure 11: Number of tokens generated for 2 parallelly recorded ls
programs w/ and w/o batching.

2 days. Despite the fact that the main reason of the blackout wasn’t due to

synchronization, yet majority of the recovery effort was focused on syn-

chronizing different systems within the grid [33, 41]. This event caused a

movement towards GPS clocks and away from NTP for synchronization in

distributed safety critical systems. Additionally there is research based on

logical synchronization for distributed systems where the focus has been

based on modeling the environment and setting time expectations for each

device. [43, 49].

Clock Synchronization inWSN.Wireless Sensor Networks (WSN) are

large-scale networks of small, low-cost, and low-power sensors. Each sensor

has a specific task such as observing the surrounding environment. Data

collected by each sensor needs to be aggregated to a single, meaningful result.

Therefore, synchronization between the sensors is highly desirable [51].

Due to limited energy and bandwidth, clock synchronization among sensors

need to be light-weight and efficient. Some works use signals that can be

received by all the sensors as a source of synchronization [19, 26, 44]. For

example, wearable sensors can use distinctive gestures captured by camera

to achieve synchronization [44]. Clock synchronization can be divided into

master-slave synchronization and peer-to-peer synchronization [51]. In

master-slave synchronization, a time server is available and all sensors

synchronize with the time server [17, 21]. In peer-to-peer synchronization,

sensor nodes broadcast reference messages with their neighbors [16, 30].

Our clock synchronization is similar to the master-slave synchronization

problem inWSN. However, we want to avoid using periodic clock correction

with the time server due to the large overhead of such protocol and limited

resources on medical devices.

Synchronization in Other Systems. In tele-immersion systems, it is

important to synchronize multimedia data collected from different sources.

Such synchronization includes inter-stream synchronization, and inter-

destination synchronization [15, 35]. A lot of work has been done on achiev-

ing multi-tier synchronization [24] and on evaluation of synchronization in

terms of user experience [38] and quality of service [39].

Clock synchronization is also an important topic in other distributed

systems such as power generation systems [8], and distributed real time

systems [25]. Probabilistic clock synchronization [3] achieves a bound on

the clock skew with a probability of invalidity associated with it. Although

this approach is suitable for real time applications with soft deadlines, it is

not suitable for an Operating Room environment. Another solution is to

use partially-ordered clock vectors [31]. This requires a causality depen-

dency between events happening on different devices. This dependency is

not clear for some events on medical devices (e.g. measuring a pulse and

measuring the blood pressure). Some other approaches combine continuous

synchronization with instantaneous synchronization [25], or need special

hardware [46].

HotSoS, April 1–3, 2019, Nashville, TN, USA Avesta Hojjati, Yunhui Long, Soteris Demetriou, and Carl A. Gunter

9 CONCLUSION
We have presented BEEER, a distributed record and replay system for the

Operating Rooms. To the best of our knowledge, BEEER is the first and only

distributed record and replay system designed specifically for the Operating

Rooms. During recording, BEEER supports both clock synchronization

with local NTP and logical ordering of events achieved through a newly

developed projection protocol. During replay, BEEER employs a novel token

mechanism to schedule ordered replay of the recorded distributed events.

BEEER further batches tokens to reduce bandwidth requirements and replay

overhead.We have evaluated BEEER’s token scheduling overhead and found

it to be acceptable. The presented system can assist forensic analysts and

device manufacturers that want to detect devices that adversely affected a

medical operation. At the same time it is useful for medical practitioners

that want to replay a medical operation for educational purposes.

Our prototype implementation assumes the BEEER executors are indi-

vidual machines that communicate through the network with the BEEER

scheduler. The presented system can assist forensic analysts and device

manufacturers that want to detect devices that adversely affected a medical

operation. At the same time it is useful for medical practitioners that want

to replay a medical operation for educational purposes.

ACKNOWLEDGEMENT
This work was supported in part by NSF CNS 13-30491 and NSF CNS 09-

64392. The views expressed are those of the authors only.

REFERENCES
[1] Philip L Altman and Dorothy S Dittmer. Respiration and circulation. Tech. rep. Federation of

American Societies for Experimental Biology Bethesda MD, 1971.

[2] Silviu Andrica and George Candea. “WaRR: A tool for high-fidelity web application record

and replay”. In: Dependable Systems & Networks (DSN), 2011 IEEE/IFIP 41st International
Conference on. IEEE. 2011, pp. 403–410.

[3] K Arvind. “Probabilistic clock synchronization in distributed systems”. In: Parallel and
Distributed Systems, IEEE Transactions on 5.5 (1994), pp. 474–487.

[4] David F Bacon and Seth Copen Goldstein.Hardware-assisted replay of multiprocessor programs.
Vol. 26. 12. ACM, 1991.

[5] Robert M Balzer. “EXDAMS: extendable debugging and monitoring system”. In: Proceedings
of the May 14-16, 1969, spring joint computer conference. ACM. 1969, pp. 567–580.

[6] Harald Bauer, Mark Patel, and Jan Veira. “The Internet of Things: Sizing up the opportunity”.

In: Retrieved from: McKinsey at https://goo.gl/hkrbgE (2014).

[7] George Bibel. Beyond the black box: the forensics of airplane crashes. JHU Press, 2008.

[8] Frede Blaabjerg et al. “Overview of control and grid synchronization for distributed power

generation systems”. In: Industrial Electronics, IEEE Transactions on 53.5 (2006), pp. 1398–1409.
[9] Nathan Dautenhahn et al. “Nested kernel: An operating system architecture for intra-kernel

privilege separation”. In: Proceedings of the Twentieth International Conference on Architectural
Support for Programming Languages and Operating Systems. ACM. 2015, pp. 191–206.

[10] David Devecsery et al. “Eidetic systems”. In: 11th USENIX Symposium on Operating Systems
Design and Implementation (OSDI 14). 2014, pp. 525–540.

[11] JosephDevietti et al. “DMP: deterministic sharedmemorymultiprocessing”. In:ACMSIGARCH
Computer Architecture News. Vol. 37. 1. ACM. 2009, pp. 85–96.

[12] Dimiter V Dimitrov. “Medical internet of things and big data in healthcare”. In: Healthcare
informatics research 22.3 (2016), pp. 156–163.

[13] Brendan Dolan-Gavitt et al. “Repeatable Reverse Engineering with PANDA”. In: Proceedings
of the 5th Program Protection and Reverse Engineering Workshop. ACM. 2015, p. 4.

[14] GeorgeWDunlap et al. “ReVirt: Enabling intrusion analysis through virtual-machine logging

and replay”. In: ACM SIGOPS Operating Systems Review 36.SI (2002), pp. 211–224.

[15] John C Eidson et al. “Distributed real-time software for cyber–physical systems”. In: Pro-
ceedings of the IEEE 100.1 (2012), pp. 45–59.

[16] Jeremy Elson, Lewis Girod, and Deborah Estrin. “Fine-grained network time synchronization

using reference broadcasts”. In: ACM SIGOPS Operating Systems Review 36.SI (2002), pp. 147–

163.

[17] Bozena Erdmann and David Sanchez Sanchez. Time synchronization in wireless ad hoc net-
works of medical devices and sensors. US Patent App. 11/719,301. 2005.

[18] Dennis Geels et al. “Friday: Global Comprehension for Distributed Replay.” In: NSDI. Vol. 7.
2007, pp. 285–298.

[19] Lewis Girod et al. “Locating tiny sensors in time and space: A case study”. In: Computer
Design: VLSI in Computers and Processors, 2002. Proceedings. 2002 IEEE International Conference
on. IEEE. 2002, pp. 214–219.

[20] Daniel Halperin et al. “Pacemakers and implantable cardiac defibrillators: Software radio

attacks and zero-power defenses”. In: Security and Privacy, 2008. SP 2008. IEEE Symposium on.
IEEE. 2008, pp. 129–142.

[21] Tian Hao et al. “Wizsync: Exploiting wi-fi infrastructure for clock synchronization in wireless

sensor networks”. In: IEEE Transactions on mobile computing 13.6 (2014), pp. 1379–1392.

[22] Derek R Hower and Mark D Hill. “Rerun: Exploiting episodes for lightweight memory race

recording”. In: ACM SIGARCH computer architecture news. Vol. 36. 3. IEEE Computer Society.

2008, pp. 265–276.

[23] Yongjian Hu, Tanzirul Azim, and Iulian Neamtiu. “Versatile yet lightweight record-and-

replay for Android”. In: Proceedings of the 2015 ACM SIGPLAN International Conference on
Object-Oriented Programming, Systems, Languages, and Applications. ACM. 2015, pp. 349–366.

[24] Zixia Huang et al. “SyncCast: synchronized dissemination in multi-site interactive 3D tele-

immersion”. In: Proceedings of the second annual ACM conference on Multimedia systems.
ACM. 2011, pp. 69–80.

[25] Hermann Kopetz and Wilhelm Ochsenreiter. “Clock synchronization in distributed real-time

systems”. In: Computers, IEEE Transactions on 100.8 (1987), pp. 933–940.

[26] V Krishnamurthy, K Fowler, and E Sazonov. “The effect of time synchronization of wireless

sensors on the modal analysis of structures”. In: Smart Materials and Structures 17.5 (2008),
p. 055018.

[27] Denis Foo Kune et al. “Ghost talk: Mitigating EMI signal injection attacks against analog

sensors”. In: Security and Privacy (SP), 2013 IEEE Symposium on. IEEE. 2013, pp. 145–159.
[28] Leslie Lamport. “Time, clocks, and the ordering of events in a distributed system”. In: Com-

munications of the ACM 21.7 (1978), pp. 558–565.

[29] Chi-Keung Luk et al. “Pin: building customized program analysis tools with dynamic instru-

mentation”. In: Acm sigplan notices. Vol. 40. 6. ACM. 2005, pp. 190–200.

[30] Michael Kevin Maggs, Steven G O’keefe, and David Victor Thiel. “Consensus clock syn-

chronization for wireless sensor networks”. In: IEEE Sensors Journal 12.6 (2012), pp. 2269–
2277.

[31] Friedemann Mattern. “Virtual time and global states of distributed systems”. In: Parallel and
Distributed Algorithms 1.23 (1989), pp. 215–226.

[32] medlibes.com Types of Insulin. Accessed: 2017-11-02. url: https://goo.gl/ET75tw.
[33] JR Minkel. “The 2003 Northeast Blackout–Five Years Later”. In: Scientific American 13 (2008).

[34] Yilin Mo and Bruno Sinopoli. “Secure control against replay attacks”. In: Communication,
Control, and Computing, 2009. Allerton 2009. 47th Annual Allerton Conference on. IEEE. 2009,
pp. 911–918.

[35] Mario Montagud et al. “Inter-destination multimedia synchronization: schemes, use cases

and standardization”. In: Multimedia systems 18.6 (2012), pp. 459–482.
[36] Pablo Montesinos, Luis Ceze, and Josep Torrellas. “Delorean: Recording and deterministically

replaying shared-memory multiprocessor execution ef? ciently”. In: Computer Architecture,
2008. ISCA’08. 35th International Symposium on. IEEE. 2008, pp. 289–300.

[37] Pablo Montesinos et al. “Capo: a software-hardware interface for practical deterministic

multiprocessor replay”. In: ACM Sigplan Notices. Vol. 44. 3. ACM. 2009, pp. 73–84.

[38] Niall Murray et al. “Subjective evaluation of olfactory and visual media synchronization”. In:

Proceedings of the 4th ACM Multimedia Systems Conference. ACM. 2013, pp. 162–171.

[39] Klara Nahrstedt et al. “QoS and resource management in distributed interactive multimedia

environments”. In: Multimedia Tools and Applications 51.1 (2011), pp. 99–132.
[40] Satish Narayanasamy, Gilles Pokam, and Brad Calder. “Bugnet: Recording application-level

execution for deterministic replay debugging”. In: IEEE Micro 1 (2006), pp. 100–109.
[41] Damir Novosel et al. “Dawn of the grid synchronization”. In: IEEE Power and Energy Magazine

6.1 (2008), pp. 49–60.

[42] Robert O’Callahan et al. “Engineering Record And Replay For Deployability: Extended

Technical Report”. In: arXiv preprint arXiv:1705.05937 (2017).

[43] Jeman Park and Taeho Kim. “A method of logically time synchronization for safety-critical

distributed system”. In:Advanced Communication Technology (ICACT), 2016 18th International
Conference on. IEEE. 2016, pp. 356–359.

[44] Thomas Plötz et al. “Automatic synchronization of wearable sensors and video-cameras for

ground truth annotation–a practical approach”. In:Wearable Computers (ISWC), 2012 16th
International Symposium on. IEEE. 2012, pp. 100–103.

[45] Gilles Pokam et al. “QuickRec: prototyping an intel architecture extension for record and

replay of multithreaded programs”. In: ACM SIGARCH Computer Architecture News 41.3
(2013), pp. 643–654.

[46] Parameswaran Ramanathan, Dilip D Kandlur, and Kang G Shin. “Hardware-assisted soft-

ware clock synchronization for homogeneous distributed systems”. In: Computers, IEEE
Transactions on 39.4 (1990), pp. 514–524.

[47] Michael Rushanan et al. “SoK: Security and Privacy in Implantable Medical Devices and Body

Area Networks”. In: Proceedings of the 2014 IEEE Symposium on Security and Privacy. SP ’14.

Washington, DC, USA: IEEE Computer Society, 2014, pp. 524–539. isbn: 978-1-4799-4686-0.

doi: 10.1109/SP.2014.40. url: http://dx.doi.org/10.1109/SP.2014.40.

[48] Yasushi Saito. “Jockey: a user-space library for record-replay debugging”. In: Proceedings
of the sixth international symposium on Automated analysis-driven debugging. ACM. 2005,

pp. 69–76.

[49] Lui Sha et al. PALS: Physically asynchronous logically synchronous systems. Tech. rep. 2009.
[50] MXVMJ Sheldon and Ganesh Venkitachalam Boris Weissman. “Retrace: Collecting execution

trace with virtual machine deterministic replay”. In: Proceedings of the Third AnnualWorkshop
on Modeling, Benchmarking and Simulation (MoBS 2007). 2007.

[51] Bharath Sundararaman, Ugo Buy, and Ajay D Kshemkalyani. “Clock synchronization for

wireless sensor networks: a survey”. In: Ad hoc networks 3.3 (2005), pp. 281–323.
[52] Leonard Tarr, BERNARD S Oppenheimer, and Robert V Sager. “The circulation time in

various clinical conditions determined by the use of sodium dehydrocholate”. In: American
Heart Journal 8.6 (1933), pp. 766–786.

[53] Timothy Trippel et al. “WALNUT: Waging doubt on the integrity of mems accelerometers

with acoustic injection attacks”. In: Security and Privacy (EuroS&P), 2017 IEEE European
Symposium on. IEEE. 2017, pp. 3–18.

[54] Wikipedia.com Infusion Pump. Accessed: 2017-06-20. url: https://goo.gl/DgT1GK.
[55] Patricia AH Williams and Andrew J Woodward. “Cybersecurity vulnerabilities in medical

devices: a complex environment and multifaceted problem”. In: Medical devices (Auckland,
NZ) 8 (2015), p. 305.

https://goo.gl/hkrbgE
https://goo.gl/ET75tw
https://doi.org/10.1109/SP.2014.40
http://dx.doi.org/10.1109/SP.2014.40
https://goo.gl/DgT1GK

	Abstract
	1 Introduction
	2 Background
	3 System Overview
	4 Device Synchronization
	5 Projection Protocol
	6 Replay Scheduling
	6.1 Log Merging
	6.2 Scheduling with Token Distribution

	7 Evaluation
	7.1 Recording Performance
	7.2 Replay Performance

	8 Related Work
	9 Conclusion

