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Abstract
Datacenter applications are often structured as many inter-

connected microservices, and the service mesh has become a

popular approach to route RPC traffic among services. This pa-

per presents ServiceRouter (SR), Meta’s global service mesh,

which has been in production since 2012. SR differs from

publicly known service meshes in several important ways.

First, SR is designed for hyperscale and currently uses mil-

lions of L7 routers to route tens of billions of requests per

second across tens of thousands of services. Second, while

SR adopts the common approach of using sidecar or remote

proxies to route 1% of RPC requests in our fleet, it employs a

routing library that is directly linked into service executables

to route the remaining 99% directly from clients to servers,

without the extra hop of going through a proxy. This approach

significantly reduces the hardware costs of our hyperscale ser-

vice mesh, saving hundreds of thousands of machines. Third,

SR provides built-in support for sharded services, which ac-

count for 68% of RPC requests in our fleet, whereas existing

general-purpose service meshes do not support sharded ser-

vices. Finally, SR introduces the concept of locality rings to

simultaneously minimize RPC latency and balance load across

geo-distributed datacenter regions, which, to our knowledge,

has not been attempted before.

1 Introduction

The increasing need for continuous integration and deploy-

ment [25] in datacenter environments has led to the widespread

adoption of the microservice architecture [?, 42], in which an

application is decomposed into a collection of services that

can be independently developed and deployed. To manage

the traffic of remote procedure calls (RPCs) between these

services, many organizations use a service mesh [30].

Figure 1 shows the most common form of layer-7 (L7, i.e.,

application layer) service mesh. In this architecture, each

service process is accompanied by an L7 sidecar proxy running

on the same machine, which routes RPC requests on behalf

of the service. As an example, when service A on machine 1

sends requests to service B, the proxy on machine 1 will

load-balance the requests across machines 2 and 3. If the

autoscaling system detects an increase in load and starts a new

replica of service B on machine 4, the control plane’s service

discovery function will notify the proxy on machine 1, which

will then include machine 4 in its load-balancing targets for

future requests for service B.

This paper presents Meta’s global service mesh called Ser-

viceRouter (SR). SR supports a comprehensive set of features,

including service discovery, load balancing, failover, authenti-

cation, encryption, observability [1], overload protection [39],

distributed request tracing [32], resource attribution for ca-

pacity management [16], and duplication of traffic for shadow

testing. Due to space limitations, the focus of this paper is pri-

marily on answering the following questions: (1) how to scale

a service mesh to millions of L7 routers, (2) how to minimize

the hardware cost of a hyperscale service mesh, (3) how to

support sharded services which are essential but often over-

looked, and (4) how to simultaneously minimize RPC latency

and balance load in a geo-distributed service mesh.

Scalability. Traditionally, a software-defined network [18]

uses a centralized control plane and a decentralized data plane.

Most service meshes [10,30,37] follow this approach and use a

central controller to configure the routing table of each sidecar

proxy. However, this approach is not sufficiently scalable for a

hyperscale service mesh. The control plane has a dual function

of generating global routing metadata and managing each L7

router. We advocate for keeping the former in the central

control plane, but decentralizing the latter by transferring

its function to L7 routers. Each L7 router should be self-

configuring and self-managing so that the central control plane

can scale out easily.

Service A

L7 Proxy

Machine 1

Service B

L7 Proxy

Machine 4

Service B

L7 Proxy

Machine 3

Service B

L7 Proxy

Machine 2

Control Plane

Region US-East Region UK

Figure 1: Sidecar-proxy-based service mesh.
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Figure 2: ServiceRouter’s scalable service-mesh architecture.

Figure 2 shows SR’s scalable architecture. On the top, dif-

ferent controllers independently execute functions such as

registering services and generating a per-service cross-region

routing table. Each controller independently updates the cen-

tral Routing Information Base (RIB), and is not concerned

with configuring or managing individual L7 routers. In the

middle of Figure 2, the distribution layer replicates the RIB

so that there are sufficient RIB replicas to handle read traf-

fic from millions of L7 routers. At the bottom, guided by the

RIB, each L7 router self-configures without the control plane’s

direct involvement. Initially, an L7 router’s routing table is

empty. When it receives an RPC request that targets a service,

it fetches the routing information for the service from an RIB

replica and subscribes to future RIB updates for the service.

Hardware cost. Existing service meshes [10, 30, 37] use

sidecar proxies to forward requests (Figure 1). However, this

approach incurs extra hardware costs due to the overhead of the

extra routing hop, such as data serialization and deserialization

in the proxy. Istio’s benchmarking [47] shows that 0.35 vCPU

can handle 1,000 requests per second. Therefore, it would

need the equivalent of 1,750,000 AWS t4g.small VMs to

route 10 billion requests per second.

SR eliminates the need for a proxy and its associated hard-

ware cost by providing the service-mesh function through a

library called SRLib. SRLib is linked into service executa-

bles and routes RPC requests directly from clients to servers.

However, this approach requires changes to services’ source

code, which is not always possible. For example, our services

written in Erlang cannot link SRLib into their executables.

To meet the diverse needs of services, SR enables the seam-

less coexistence of different types of L7 routers, including

Istio-style sidecar proxies, AWS-ELB-style [5] dedicated load

balancers, and gRPC-style lookaside [24] load balancers, as

shown in Figure 2. The key insight that enables SR’s versa-

tility is that the controllers at the top of Figure 2 are agnostic

to the L7 routers at the bottom, allowing the L7 routers to

choose their own architecture.

The embedded SRLib helps us achieve significant hardware

savings. Currently, 99% of RPC requests at Meta are routed by

SRLib, and the remaining 1% is routed by sidecar proxies and

a group of dedicated load balancers that consume thousands of

machines. If we were to completely switch from using SRLib

to using proxies to route 100% of our traffic, we would need

to add hundreds of thousands of extra machines.

Sharded services. Sharding [34] and replication are two key

techniques for building scalable services. In our fleet, the vast

majority of RPC traffic is for sharded services. Despite their

importance, existing general-purpose service meshes do not

directly support routing for sharded services. For example, in

Figure 1, assuming that Service B’s replicas on machines 2, 3,

and 4 host various data shards that can dynamically migrate

across machines, it is possible for the proxy on machine 1 to

route a request to machine 2 mistakenly, even if the request is

meant for a shard on machine 3.

SR makes sharding support a top priority and uses a sin-

gle framework to support both sharding and replication. As

sharding is often tied to application logic, our key insight is

to enforce separation of concerns by defining a simple and

generic sharding abstraction between the service mesh and

services. This allows SR to route traffic for different sharded

services without needing to know their application logic.

Cross-region routing. Existing solutions [4, 41] are not op-

timized for routing across geo-distributed datacenter regions.

For example, in Figure 1, should machine 1 route requests to

machines 2 and 3, which have a higher load, or to machine

4, which has a longer network latency? Moreover, how to en-

sure that the resulting global traffic distribution for a service

matches the global supply of the service’s capacity in different

regions? These questions have not been well answered before.

To better support cross-region routing, we introduce the

concept of locality rings for services to express their preferred

tradeoff between latency and load. For example, a service

can instruct SR that if and only if the load in the local region

goes above 70%, SR can relax the locality constraint and route

some local traffic to other regions in the same continent; if the

load further increases above 80%, SR can even route some

local traffic to regions in a different continent. SR collects

global traffic and load information for each service, computes

a cross-region routing table that conforms to the requirements

specified in locality rings, and disseminates the routing table

to L7 routers to guide their routing. This allows SR to provide

globally optimized traffic shaping for services.

Contributions. We summarize our contributions below.

• SR is designed for hyperscale. While there may be pro-

prietary systems of a similar scale, their specifics are not

publicly available, and existing open-source service meshes

do not scale well [57]. We hope that our experience can be

helpful to those who seek to build scalable service meshes.
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• SR supports the seamless coexistence of different types

of L7 routers in one service mesh, including sidecar prox-

ies [30], dedicated load balancers [5], lookaside load bal-

ancers [24], and an embedded routing library. To save on

hardware costs, SR routes 99% of RPC requests in our fleet

using the embedded library. This approach, along with the

scale at which we utilize it, might be unique in the industry.

• While existing service meshes exclusively focus on un-

sharded services, which only account for 32% of our fleet’s

RPC requests, SR provides built-in support for sharded

services, which account for 68% of our traffic.

• Although primitive forms of locality-aware routing existed

before [31], our novelty is to introduce the concept of lo-

cality rings to simultaneously minimize RPC latency and

balance load across geo-distributed regions.

2 Comparison of Services Mesh Architectures

In this section, we compare different architectures of service

mesh. The design space, shown in Table 1, is determined by

the answers to two key questions: (1) which component fetches

and caches the routing metadata, and (2) which component

routes application RPC traffic. In Table 1, Library, Kernel,

Local, and Remote mean that RPC routing or maintenance of

routing metadata is performed by an embedded library, the

kernel, a local proxy/daemon on the RPC client machine, or a

remote proxy/service outside the client machine, respectively.

2.1 Different Types of L7 Routers in SR

SR allows different L7 router setups to coexist in one service

mesh in order to support diverse use cases. These setups are

shown in Figure 4 and explained below. Different types of L7

routers interoperate well and can send RPC requests to the

same server at the same time.

SRLib. This setup is shown in Figure 4(a) and corresponds to

solution (9) in Table 1. It provides the service-mesh function

through a library, which is directly linked into the RPC client’s

executable. The library can route requests directly to servers

without the need for a proxy, eliminating the extra hardware

cost and routing latency of a proxy. The client only needs to

fetch and cache a small part of RIB (called the miniRIB) that

is actively used by the client.

We run a separate RIBDaemon on the client machine to

cache miniRIB, instead of relying on SRLib to do so. This

Which component manages and caches miniRIB?

Lib Kernel Local Remote

Which

component

forwards

application

RPC traffic?

Lib (1) : (5) : (9) SRLib (13) SRLookaside

Kernel (2) : (6) eBPF (10) : (14) :

Local (3) : (7) : (11) SRSidecarProxy
(15) SRSidecarProxy

plus SRLookaside

Remote (4) : (8) : (12) : (16) SRRemoteProxy

Table 1: The complete solution space for service mesh. The

symbol : indicates undesirable solutions.

separation allows for the use of cgroup to provide strong

isolation between a) RIBDaemon’s less urgent background

work that keeps miniRIB up-to-date and b) SRLib’s latency-

sensitive foreground work that routes RPC requests and is

on the critical path of application performance. Updates to

RIB can be very spiky and when those updates are pushed to

miniRIB, they can cause a spike in CPU usage to process the

updates. Figure 3 shows the spiky CPU usage of a production

machine’s RIBDaemon. When cgroup throttles RIBDaemon,

it has little impact on SRLib because SRLib consults RIBDae-

mon only once on its first RPC for a service and all subsequent

RPCs for the service go directly from SRLib to servers without

involving RIBDaemon. In contrast, if miniRIB is managed by

SRLib, cgroup cannot isolate the resource usage for maintain-

ing miniRIB from the application’s own resource consumption

because SRLib is linked into the application.

SRLookaside. This setup, shown in Figure 4(b) and cor-

responding to solution (13) in Table 1, addresses the issue

of RIBDaemon running on every RPC client machine and

consuming resources, particularly memory. It eliminates RIB-

Daemon by moving the function of miniRIB management

and server selection to a remote and shared SRLookasideSer-

vice, while still routing RPCs directly from clients to servers

without going through an intermediate proxy.

Historically, Meta used a large fleet of small machines with

as little as 16GB memory because of their advantages in power

efficiency. Accordingly, SRLookaside was developed to save

memory on those small machines. Now even our small ma-

chines have at least 64GB memory and hence the usage of

SRLookaside was deprecated, because the limited memory

savings no longer justify the burden of maintaining the SR-

Lookaside service.

SRSidecarProxy. This setup, shown in Figure 4(c) and cor-

responding to solution (11) in Table 1, incurs extra hardware

costs and routing latency like Istio [30], but its implementa-

tion is much more scalable than Istio, because each SRProxy

self-manages without the control plane’s involvement and only

caches miniRIB instead of the entire RIB. At Meta, the usage

of SRSidecarProxy is mostly limited to services written in

Erlang because SRLib does not directly support Erlang.
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Figure 3: Spiky CPU usage of a machine’s RIBDaemon.
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Figure 5: A shared SRProxy is better at dealing with many

clients sending infrequent cross-region RPC requests.

SRRemoteProxy. This setup, shown in Figure 4(d) and cor-

responding to solution (16) in Table 1, is similar to AWS

ELB [5]. SRRemoteProxy functions as a dedicated load bal-

ancer shared by multiple clients, reducing the number of RPC

connections and increasing the reuse of keep-alive connec-

tions, as illustrated in Figure 5. Suppose there are a large

number of clients and each client sends a request to a server

in a remote datacenter region occasionally. Each RPC would

experience a long delay due to the three rounds of cross-region

round-trip time needed to establish a new TLS/TCP connec-

tion. A shared proxy eliminates this overhead by keeping a

small number of cross-region connections alive and reusing

them to send requests on behalf of many clients.

2.2 Comparison of L7 Routers

Next, we compare solutions in Table 1. Solutions (1)–(4)

are undesirable because managing miniRIB in the library

would impact the application’s performance due to lack of

isolation. Solutions (5), (7), and (8) are undesirable because

there is no system call to access miniRIB cached in the kernel.

Although solution (6) exists in the form of eBPF-based service

mesh [35], its function is limited by what can be done by an

eBPF program in the kernel. For example, Cilium [29]’s eBPF

program can only handle L3/L4 protocols and it still has to use

a sidecar proxy to handle L7 protocols. Similar to solution (6),

solutions (10) and (14) are undesirable because of the difficulty

of implementing advanced L7 routing features in the kernel.

Service

Mesh

Alternatives

A1:

HW

cost

A2:

direct

RPC

A3:

fast

RIB

A4:

save

mem

A5:

unchg

code

A6:

share

conn

SRLib 6 6 6 H : :

Sidecar Proxy : : 6 H 6 :

Remote Proxy : : 6 6 6 6

Lookaside H 6 : 6 : :

Attributes Description

A1: HW cost No extra hardware cost for proxy or lookaside service.

A2: direct

RPC

Application RPC traffic goes from clients to servers without

the overhead of going through an intermediate proxy.

A3: fast RIB No overhead to access Routing Information Base (RIB)

outside the client machine thanks to local RIB caching.

A4: save mem No extra memory usage on the client machine thanks to the

elimination of the local RIB cache.

A5:unchgcode No need for application source code modification.

A6:

share conn

Benefits of multiple clients sharing a proxy, e.g., better load

balancing or connection reuse (Figure 5).

Alter- na-

tives

When to use a particular service-mesh setup Usage at

Meta

SRLib Use SRLib for large-scale deployments where hard-

ware costs and routing latency are most important.

99% of

traffic

Remote

Proxy

Use remote proxies if it benefits from multiple clients

sharing a proxy, e.g., to improve connection reuse

when there are many low-traffic clients (Figure 5).

Some

limited

use

Sidecar

Proxy

Use sidecar proxies if you cannot modify application

source code to use SRLib, or SRLib does not support

the app’s programming language (e.g., Erlang).

Only

one-off

use

Lookaside Use a remote lookaside service to reduce the memory

used on every client machine for caching miniRIB.

Depre-

cated

Table 2: Comparison of service mesh design alternatives.

Solution (12) is undesirable because it is strictly worse than

(16), i.e., if routing is performed by a remote proxy, it is better

to move miniRIB to the remote proxy as well. Theoretically,

solution (15) uses less memory on the client machine than

(11) does. However, (15) is not used at Meta since even (11)

is not widely used and the added benefit of (15) is limited.

Finally, for ease of access, we summarize in Table 2 the

comparison of the design alternatives.
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3 ServiceRouter Design

In this section, we first present an overview of ServiceRouter

and then elaborate on its key design ideas.

3.1 Overview

SR supports all four types of L7 routers depicted in Figure 4.

For the sidecar or remote proxy setup, we add a wrapper layer

atop SRLib code to run it as a standalone proxy. SR’s control-

plane components are depicted in Figure 6 and further ex-

plained below.

Routing Information Base (RIB). RIB is a Paxos-based

key-value store with nine Paxos acceptors distributed across

five geographic regions to ensure high availability. It centrally

stores routing metadata for all services running in all regions.

It uses thousands of Paxos learners to create many local RIB

replicas in every region to ensure high read throughput and

availability even if a region is disconnected from other regions.

We discuss how to scale RIB in §4.1.

Global Registry Service (GRS). GRS maintains service

and shard discovery information in RIB. Figure 7 shows two

example services registered at GRS. Service A is replicated

but not sharded. When the cluster manager [53] starts or stops

a container for service A, it informs GRS to update the list of

service A’s replicas. We will explain SR’s built-in support for

sharded services in §3.3.

Configuration Management System (CMS). CMS [52]

allows customization of the routing policy for each service,

including RPC timeout, connection reuse, locality routing

preference, etc. Services owners follow the configuration as

code paradigm to author, review, and commit routing config-

urations. It also supports automated configuration updates.

For example, the latency monitoring service (LMS) periodi-

cally aggregates and commits configuration updates related

to cross-region latency to guide SRLib’s routing decisions.

Cross-region Routing Service (xRS). Compared with a

centralized load balancer, SRLib only has a local view of the

traffic from one client and might not make globally optimal

routing decisions. xRS addresses this problem by aggregating

global traffic information for each service and computing a

cross-region routing table, which is disseminated via RIB and

consumed by SRLib to guide its routing decisions.

Service B’s replicas:
IP3:port3

shard0 [primary, 0, 100)

shard5 [secondary, 500, 900)

IP4:port4

shard3 [secondary, 300, 500)

shard5 [secondary, 500, 900)

shard9 [secondary, 900, 2000)

IP5:port5

shard0 [secondary, 0, 100)

shard3 [primary, 300, 500)

shard5 [primary, 500, 900)

…

Service A’s replicas:

IP1:port1

IP2:port2

…

Unsharded service Sharded service

Figure 7: Examples of GRS’ service registry records.

3.2 Service Discovery

A RIBDaemon runs on each machine and maintains a so-called

miniRIB that caches the specific parts of RIB that are needed

by the RPC clients running on the machine. Initially, miniRIB

is empty. When SRLib wants to send an RPC request to a

particular service, such as service X, it requests service X’s

routing metadata from RIBDaemon. RIBDaemon fetches the

metadata from a RIB replica, caches it on disk so that it can

survive machine reboots, subscribes to future updates related

to service X, and finally returns the metadata to SRLib. SRLib

also subscribes to RIBDaemon for future updates and caches

the metadata in memory (but not on disk) for later reuse so

that it won’t contact RIBDaemon on every RPC request.

When the deployment of service X is changed in the future,

the cluster manager informs GRS to update RIB. The update

is immediately pushed to all RIB replicas, which further push

the update to every RIBDaemon that subscribes to service X’s

routing metadata. Finally, RIBDaemon pushes the update to

SRLib. Service X may be deployed in multiple datacenter

regions, and its replicas in each region are managed by a dif-

ferent regional cluster manager. All of these cluster managers

inform GRS to update the same service-registry record for

service X so that a client’s RPC request can potentially be

routed to a replica in any region (§3.4.1). The RPC client of

a service can choose to send requests only to servers located

in the same region as the client. In this scenario, to reduce

overhead, RIBDaemon subscribes only to routing updates

originating from the local region.

With the help of the cluster manager, clients do not need

to independently discover a server’s failure through timeouts.

When a server is brought down for planned maintenance, such

as code deployment, the cluster manager first updates RIB to

inform the clients and then stops the server. For unplanned

failures, the cluster manager detects all kinds of failures, such

as process crashes/hangs and machine failures, and updates

RIB to inform the clients.

3.3 Support for Sharded Services

SR provides built-in support for sharded services. In Figure 7,

service B is both sharded and replicated. We define a sim-
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ple sharding abstraction between SR and services to enforce

separation of concerns, so that SR can route traffic without

needing to know a sharded service’s internal application logic.

Specifically, a service specifies how a 128-bit key space is

partitioned into shards. Each shard can be independently repli-

cated and migrated across containers. Each shard replica is

associated with an abstract role, e.g., primary or secondary. In

this example, shard5 corresponds to the key range [500, 900)

and its replica on IP4:port4 serves the secondary role. SR is

not concerned with the real semantics of the shard key or role,

and merely routes requests according to a client’s request.

SRClient *cln = SR_get_client("ServiceB", 618/*key*/, SECONDARY);

cln->foo(); // Invoke RPC for foo().

In this example, SR discovers that shard5 contains key 618 and

shard5’s secondary role is served by its replicas on IP3:port3

and IP4:port4. SR picks one of them to serve the request

according to the load balancing policy. In the service’s imple-

mentation, the primary and secondary roles could be mapped

to the leader and follower replicas of a database, respectively.

SR’s shard-map abstraction is generic and currently sup-

ports hundreds of sharded services. Most but not all of them

are managed by a common shard manager [34], which notifies

GRS to update the shard registry when new shards are added

or removed, or existing shards are migrated across containers.

With SR, sharded and unsharded services share and reuse

all the sophisticated components in SR (Figures 2 and 6).

Moreover, routing for sharded services works out-of-the-box

without any additional effort. In contrast, existing general-

purpose service meshes do not support sharded services, and

applications have to develop their own solutions.

Design alternatives. One alternative to SR’s shard-map ap-

proach is consistent hashing [33]. Given a list of servers,

it deterministically determines the server responsible for a

given key based on hashing. As a result, it does not need

to store the shard map in Figure 7. Despite its advantage

in simplicity, consistent hashing is insufficient for advanced

sharding use cases, as its deterministic key assignment does

not support dynamic migration of shards in response to shard

load changes [2, 34]. SR provides built-in support for both

consistent hashing and the shard-map approach. As shown

in our previous work [34], out of the hundreds of sharded

services at Meta, the number of services that choose to use

a flexible shard map is 5.4 times higher than the number of

services that choose to use consistent hashing, which confirms

the importance and effectiveness of the shard-map approach.

Another alternative to SR’s shard-map approach is to al-

low a service to provide its own custom lookaside-service

implementation. This approach can provide maximum flexi-

bility and separate the service’s custom shard discovery and

selection logic from the service mesh. Both gRPC [24] and

SR’s lookaside interfaces can support this approach. At Meta,

some service owners were initially interested in this approach

because of its flexibility. However, they ultimately did not use

it because of the burden of maintaining a custom lookaside

service, and also because it turns out that the shard-map ap-

proach and consistent hashing together are sufficient for nearly

all sharded services.

3.4 Load Balancing

SR’s load-balancing solution is based on the Pick-2 [41]

algorithm. Pick-2 randomly samples two servers from a

candidate pool and chooses the server with less load as the

RPC target. However, using Pick-2 alone is not sufficient for

a geo-distributed service mesh. Therefore, we have developed

three novel techniques to complement Pick-2: 1) Consider

regional locality when sampling two random servers (§3.4.1).

2) Sample two random servers from a stable subset of servers,

rather than all servers, to maximize connection reuse (§3.4.2).

3) Take an adaptive approach to load estimation based on the

workload characteristics (§3.4.3). Further details on these

techniques are provided in the following sections.

3.4.1 Locality Awareness

In a geo-distributed service mesh, a faithful implementation

of Pick-2 would cause long RPC latencies because it does

not take regional locality into account. Our measurements

show that the P50 of within-region RTT is only 116ąĉ, while

the P50 of cross-region RTT is 35ăĉ and the P99 is as high as

163ăĉ. These data emphasize the importance of considering

regional locality when routing RPC requests.

Instead of Pick-2’s approach of randomly sampling two

servers from the candidate pool, SR uses the so-called locality

rings to filter out long-latency servers that are far from the

client, and then sample from the remaining nearby servers.

Each service can define a set of rings with increasing latencies,

e.g.,
[
ring1: 5ăĉ | ring2: 35ăĉ | ring3: 80ăĉ | ring4: @

]
. The

Latency Monitoring Service (LMS) periodically updates RTTs

between regions, and RPC clients obtain them via CMS.

An RPC client uses cross-region RTTs to estimate its la-

tency to different servers. Starting from ring1, if the client

finds any RPC server whose latency is within the latency

bound for ringÿ, it filters out all servers in ringÿ+1 and above,

and randomly samples two servers from ringÿ. If the service

has no servers in ringÿ, it considers servers in ringÿ+1, and so

forth. SR’s default setting maps
[
ring1|ring2|ring3|ring4

]
to[

same region| neighboring regions| same continent| global
]
.

Filtering by locality rings reduces routing latencies but still

has limitations due to lack of a global view. First, servers

in ringÿ might be overloaded while servers in ringÿ+1 are un-

derutilized. Second, clients’ local routing decisions might

not lead to an optimal global traffic distribution that matches

the global supply of server capacity. In particular, when a

region Ĕ fails, if all clients independently decide to reroute

their requests initially going to Ĕ, to Ĕ’s nearest region ĕ ,

they may overload ĕ , bring it down, and together move onto

the next region Ė, and so forth, causing a domino effect.
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The Cross-region Routing Service (xRS) solves these prob-

lems by using global information to compute a per-service

cross-region routing table whose entry [ČÿĀ] means that ČÿĀ

fraction of the service’s RPC requests originated from region

Ďÿ should be routed to region ĎĀ . The cross-region routing

table is stored in RIB and disseminated to all clients. When

an RPC client wants to send a request, it follows the traffic

distribution ČÿĀ to randomly choose a destination region, and

then applies the normal routing algorithm to select a server in

the destination region.

xRS can purposely update the routing table to shift traffic

out of a region in preparation for an upcoming maintenance

event or in response to a disaster. While doing so, it tries

to avoid overloading other regions. Guided by a PID con-

troller [50], it gracefully shifts traffic across regions to prevent

over-reaction. If there is insufficient capacity globally, it cre-

ates so-called black holes in the routing table to instruct clients

to drop certain traffic instead of overloading servers.

Next, we describe how xRS computes the cross-region rout-

ing table. xRS collects traffic and load information globally,

and simulates how a region’s load would change if more or less

traffic is routed to the region. For each service, xRS periodi-

cally fetches load information from its servers and aggregates

it by region. It also collects requests per second (RPS) served

by servers in each region, which is used to calculate the RPS

cost as the ratio of a region’s load to its RPS. RPS cost is the

estimated load increase due to a unit of RPS increase. For

example, the load for a region with a 60% load serving 100

RPS, would increase by 0.6% if 1 RPS is added to the region.

xRS strives to simultaneously minimize RPC latency and

balance load across regions. It expands the locality rings

with load thresholds, e.g.,
[
ring1: 5ăĉ : 55% | ring2: 35ăĉ

: 65% | ring3: 80ăĉ : 80% | ring4: @ : @
]
. Intuitively, it

means that, for example, when ring1’s load goes beyond 55%,

xRS will relax its latency restriction and start to consider

routing traffic to servers in ring2, and so forth. This load-

enriched locality ring information is not directly consumed

by SRLib, but instead is fed to xRS to compute a per-service

cross-region routing table as follows. xRS first tries to serve

all requests in the source region locally, by setting "ÿ Čÿÿ = 1

and "ÿ"Ā � ÿ ČÿĀ = 0. Then assisted by each region’s RPS cost,

it identifies the most loaded region and tries to follow the

preference in the locality rings to move some of the region’s

traffic to nearby regions. This process repeats until either no

regions are overloaded or all regions are equally loaded.

Currently, 46% of our services are routed using xRS’ cross-

region routing tables, while the rest are routed using the base-

line locality rings without the routing tables. Some services

choose not to use xRS due to the overhead of collecting global

traffic and load information. Moreover, some services gener-

ate high traffic and require low latency, and as a result, they

prefer to fail a request instead of routing it across regions.

In total, about 16% of RPC requests in our fleet are routed

across regions. This emphasizes the importance for global

service meshes to optimize cross-region routing, an area that

is largely overlooked by existing service meshes.

Design alternative. With xRS, service owners need to apply

their domain knowledge to set the thresholds for network RTT

and server utilization in locality rings. To avoid the burden

of setting these thresholds, an alternative approach is to use

end-to-end RPC latency as the sole metric, which, in theory,

would automatically consider both network RTT and server

utilization. The load-balancing goal of this latency-focused

approach would be to minimize the average RPC latency. Paci-

fici et al. [45] used a similar approach in a local cluster setting.

However, SR does not follow this approach because, based

on both queuing theory [11] and our production experience,

modeling latency at high utilization is not robust. This implies

that xRS would not be able to accurately predict how traffic

shifts would affect RPC latency.

Moreover, minimizing RPC latency by trading long queuing

delay at the RPC server for long cross-region network RTT is

not a robust method, as it can lead to overloading of nearby

servers and a high RPC error rate. We explain this through an

example. Suppose a client sends requests to two servers Ĕ and

ĕ , where Ĕ is in the same region with a 100ąĉ RTT and ĕ is

in a different region with a 100ăĉ RTT. Further assume that it

takes 1ăĉ to process a request. To minimize the RPC latency,

the latency-focused approach would send all requests to Ĕ,

which is in the local region, until its queuing delay reaches

100ăĉ, and only then it would start to send requests to ĕ ,

which is in a remote region. However, with a processing time

of 1ms, when the queuing delay at Ĕ reaches 100ms, Ĕ would

be severely overloaded and might experience a high error rate.

Overall, in a geo-distributed environment where network RTT

may vary by three orders of magnitude, from 100ąĉ to 100ăĉ,

the latency-focused approach is not robust.

3.4.2 RPC Connection Reuse

Our measurements show that setting up a new TLS/TCP con-

nection takes 1.6ms and consumes 14KB of memory on each

side. To reduce this overhead, SR keeps the TLS/TCP connec-

tions and reuses them across different RPC requests. However,

the randomization used by Pick-2 makes connection reuse

ineffective. As Pick-2 randomly samples two servers out of

all Ą servers for each request, over time, an RPC client com-

municates with all Ą servers. However, it is impractical to

maintain keep-alive connections with all Ą servers when Ą is

large because of the memory and CPU overhead required to

maintain the connections.

To improve connection reuse, an RPC client chooses a

stable subset of ā servers out of all Ą servers (often āÃ Ą), and

keeps reusing these ā stable servers. Upon each RPC request,

Pick-2 samples two servers out of the ā stable servers instead

of all Ą servers. Over time, the client maintains keep-alive

connections with the ā stable servers.

One challenge is for each RPC client to independently

choose their ā stable servers while globally the load spreads
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evenly across all Ą servers. Suppose a server on average main-

tains keep-alive connections with ĉ clients. When a new

server is added to the existing Ą servers, an ideal and stable

solution should require only M clients to drop one existing

server out of their list of ā stable servers and add the new

server to their list, so that the new server also serves ĉ clients

like other servers.

With SR, each RPC client uses Rendezvous Hashing [9,54]

to select ā stable servers, which achieves the ideal properties

described above. Specifically, a client uses its unique client

ID as hashing salt, computes the hashcodes of all servers,

and chooses the ā servers with the largest hashcode. Stable

servers and Rendezvous Hashing together help SR maximize

connection reuse. In production, over99% of our RPC requests

reuse existing connections.

Design alternative. We prefer Rendezvous Hashing over

Consistent Hashing [33] because it allows SR to use weighted

hashing to assign client connections proportional to a server’s

compute power. This in combination with a weighting mecha-

nism to bias the Pick-2 probability proportional to a server’s

compute power, solves the problem that our large fleet runs

multiple generations of hardware that have very different per-

formance characteristics. Moreover, Rendezvous Hashing

achieves better load balancing. For example, when a server

dies, its load is evenly redistributed to other servers even with-

out using Consistent Hashing’s virtual servers.

3.4.3 Adaptive Load Estimation

In order for Pick-2 to choose a routing target between two

candidates, it needs to know the load information. By default,

SR uses the number of outstanding requests at an RPC server

to represent its load. In addition, SR allows custom load

metrics such as CPU, memory, disk, or any application-level

metric. Currently, 77% and 18% of the RPC requests in our

fleet use the number of outstanding requests and CPU usage as

the load metric, respectively, while the rest use other metrics.

To determine a server’s load, a client has two options:

1) Poll the server for its load right before deciding whether to

send a request to the server, which incurs additional overhead

and latency. 2) Have the server include its load information

on its responses and then cache it at the client for later reuse,

which is efficient but may result in the client using stale load

information and causing load imbalance.

To strike a balance between these two approaches, SR em-

ploys an adaptive mechanism. An RPC response is always

piggybacked with the server’s current load information. When

evaluating a server’s load before sending a new request, the

client uses the cached load information only if it is sufficiently

fresh (method 1). Otherwise, it polls the server for its realtime

load if the network RTT to the server is low compared with

the server’s average request-processing time (method 2). In

the worst case that the cached load information is stale and the

polling overhead is high, it chooses one of the two candidate

servers at random. (method 3).

Design alternative. LI [13] attempts to solve the load-

estimation problem by using methods 1 and 3 alone, without

method 2 (polling). Data from our production system show

that, with SR’s adaptive mechanism, about 50%, 25%, and

25% of RPC requests end up using methods 1, 2, and 3, re-

spectively. This confirms the usefulness of introducing the

just-in-time polling method.

4 Evaluation

Our evaluation attempts to answer the following questions:

1. Does SR scale well? (§ 4.1)

2. To what extent does SRLib save hardware costs, and when

should one use SRProxy versus SRLib? (§ 4.2)

3. Can SR balance load within and across regions? (§ 4.3)

4. Are sharded services important, and can SR effectively

support both sharded and unsharded services? (§ 4.4)

4.1 Scalability

Hyperscale is a key design goal that distinguishes SR from

most of the existing service meshes. SR currently operates in

tens of datacenter regions and runs millions of L7 routers to

serve tens of thousands of services. GRS globally distributes

service discovery information for millions of containers and

hundreds of millions of shards.

To understand the scale of individual services, we plot the

number of servers used by services in Figure 8. A small

fraction of services are very large while most are very small.

Specifically, while 90% of services each use less than 200

servers, 2% of services each use more than 2,000 servers and

the largest service uses about 90ć servers. Figure 9 shows

the RPS of services. Similarly, while most services have a low

RPS, some hyperscale services process billions of RPS. These

hyperscale services often demand the highest performance

and most sophisticated features from SR. Overall, Figures 8

and 9 show that SR scales well for both a small number of

hyperscale services and a large number of small services.

In SR’s overall architecture (Figure 6), the central RIB

enables separation of concerns for different components in the

Figure 8: Number of servers used by services. Each dot rep-

resents one service. Note that both axes are in log scale.
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Figure 9: Requests per second by services. Each dot represents

one service. Note that both axes are in log scale.

data plane and the control plane so that each component can

scale out independently. However, RIB itself might become

a bottleneck, primarily due to the large amount of service-

discovery data stored in RIB and the associated write rate.

Currently, RIB’s total size is about 12GB, processing about

335 writes/second at a total data rate of about 39MB/second.

The write rate is low because writes are heavily batched; in

particular, sometimes thousands of updates for the service-

discovery registry are batched into a single write. In the past,

we used ZooKeeper as the data store for RIB, which could not

scale beyond a few GB, and hence we sharded RIB. Now we

use an in-house data store [6] that scales well and there is no

urgency to shard RIB further. Overall, currently RIB is not a

bottleneck and it can be further sharded to scale out if needed.

The distribution of RIB is fast, far from reaching any scal-

ing bottleneck. We operate about 2,000 RIB replicas globally,

which form a 2-layer data distribution tree among themselves.

In our production environment, the distribution latency of an

RIB update to reach clients in geo-distributed datacenter re-

gions is 400ms/900ms/1300ms at P50/P95/P99, respectively.

Due to the propagation delay of service discovery infor-

mation, any system that does service discovery and routing,

not just SR, will encounter the problem of stale routing in-

formation on some clients. In the face of stale routing infor-

mation, SR guarantees correctness and strives to minimize

performance impact. For example, if an SR client sends a

request for a specific shard to a server that no longer holds the

shard, the client will receive an error and automatically retry

a different server. To improve performance, SR minimizes

the chance of this scenario by implementing graceful shard

migration. When migrating a shard from server Ĕ to server

ĕ , as described in our previous work [34], the shard manager

first starts the shard on Y, then updates RIB to redirect clients

to send traffic to Y, and finally stops the shard on Ĕ.

As long as RIB scales well, xRS, CMS, LMS, GRS, and

the L7 routers can all scale out horizontally. xRS is sharded

by service and can scale out horizontally. Computing the

routing table for one service only takes about one second.

CMS processes about 10,000 routing-configuration changes

per day for about 2,500 services, and 99% of those changes

are driven by automation tools. Overall, the rate of writes to

CMS is far from reaching any bottleneck.

To understand the nature of routing-configuration changes,

we list the types of the most frequent changes on an average

day. A data pair (X%/Y) below means that every day X% of

the total changes are for a specific type, which are applied to Y

number of services. The top types of changes are 1) processing

timeout (27%/1700), the server-side RPC processing timeout;

2) locality ring (30%/700); 3) traffic shedding (11%/3), the

percentage of traffic to be shed for a given client ID in an over-

load situation; and 4) shadow traffic (6%/100), the percentage

of production traffic to be replicated to a test service. These

data demonstrate that it is easy to dynamically reconfigure

the routing policies for thousands of services at the central

CMS. Moreover, it shows that locality ring is an important

feature that is frequently tuned for services to achieve the best

cross-region routing performance.

4.2 Hardware Cost

We compare the CPU overhead of SRLib and SRProxy, and

use case studies to illustrate when to use SRProxy.

4.2.1 SRLib versus SRProxy

To quantify the hardware cost, we conduct an experiment to

compare three RPC setups: 1) SRLib, where a client uses

SRLib to route requests to a simple service running on 10

machines; 2) SRProxy, where a client sends requests to a

remote SRProxy, which forwards requests to the servers; and

3) Thrift, where a barebone client hard-codes a most efficient

way to randomly select one of the 10 servers and invokes it

using the Thrift [51] RPC protocol. SRLib and SRProxy’s

internal implementation also use Thrift but add extra logic

atop it. Therefore, Thrift represents the lower-bound baseline.

In all three setups, the RPC connections are 100% reused to

avoid the connection establishment overhead. All servers used

in the experiment are located in the same region to minimize

the impact of network latency. We use three RPC payload

sizes. The Production size uses requests and responses of

5.4ćþ and 6ćþ, respectively, which are the average sizes

of payloads in production. The Large and Small sizes use

payloads that are 10Ď or
1

10
Ď of the production payload size,

respectively. We report in Figure 10 the end-to-end RPC

latency and the total CPU instructions executed across the

client, proxy (if used), and server when processing one RPC.

Using production-sized payloads, compared with Thrift,

SRLib and SRProxy consume 80% and 273% additional CPU

cycles, respectively. The overhead is high because this experi-

ment is set up to measure almost the worst case of SRLib and

SRProxy. Since the payload’s data type is a trivial string, seri-

alization and deserialization in Thrift take little time. More-

over, both the RPC client and server do not do any processing.

Overall, this setup minimizes all other overhead in order to

show the worst-case setup for SRLib and SRProxy. In our pro-

duction environment, when aggregated across all workloads
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Figure 10: Comparison of latency and CPU overhead across

three setups: the Thrift baseline, SRLib, and SRProxy.

running on all servers, SRLib consumes 36% additional CPU

cycles compared to Thrift. This is much lower than the 80%

overhead observed in this worst-case experiment.

For the SRProxy setup using production-sized payloads, the

CPU consumption is evenly split between the client and proxy.

Thrift and SRLib have almost identical latency, whereas SR-

Proxy’s latency is 107% higher. Using large-size payloads,

the relative overhead of SRLib and SRProxy becomes smaller.

Compared with Thrift, SRLib and SRProxy consume addi-

tional 25% and 190% CPU cycles, respectively.

This experiment shows that, across the RPC client and

proxy, the SRProxy setup in total consumes more than twice

the amount of CPU cycles as the SRLib setup. In our pro-

duction environment, we use thousands of SRProxy machines

to route 1.1% of the total RPC requests, which generate only

0.1% of the total RPC data transferred. The remaining RPC

requests are routed by SRLib. If we were to completely switch

from SRLib to SRProxy and route 100% of the RPC traffic by

SRProxy, we would need hundreds of thousands of additional

machines for SRProxy.

In the SRProxy setup with production-sized payloads, the

split between CPU instructions executed in the kernel and

user space is 26% versus 74%. This indicates that even if the

kernel overhead could be entirely eliminated through methods

like zero-copy data forwarding, it would still be insufficient

to significantly reduce the proxy’s overhead. Moreover, the

proxy cannot perform zero-copy data forwarding because it

needs to manage encryption and identity.

Using small and production-sized payloads, SRLib’s la-

tency appears to be slightly better than Thrift, but since the

standard deviation is high, the small difference is mostly

caused by measurement noises in our production network

that serves many other production services. Lastly, we would

expect to see less CPU cycles consumed by the client side

of the SRProxy setup compared with the client side of the

SRLib setup, as the former does less routing work. However,

the difference is insignificant in this experiment because the

SRLib code path is slightly better optimized by our years of

investments in it.

4.2.2 Case Study of When to Use SRProxy

As shown in Figure 5, a shared SRProxy improves connection

reuse, which potentially can reduce the latency of cross-region

RPCs at the expense of extra hardware to host SRProxy. The

tradeoff depends on the business value of the reduced latency

and the cost of the extra hardware. In practice, we always

carefully evaluate our customer’s request of using SRProxy

case by case. We present several case studies below.

E-Comm. E-Comm is a sharded ranking service used in e-

commerce. Due to its tight service-level objective (SLO) for

latency, all of its shards were replicated to every region to

enable local access. We analyzed its traffic pattern and found

that by allowing only 5% of its traffic to go across regions, we

could avoid replicating 33% of its shards in every region. This

would lead to significant hardware savings but at the expense

of increased latency. In Figure 11, we compared E-Comm

with and without SRProxy and found that SRProxy improved

cross-region connection reuse and reduced the P90 latency

from about 325ăĉ to about 150ăĉ. E-Comm’s maximum

per-region RPS is about 300ć , which can be handled by 4

SRProxy machines since each SRProxy machine can handle

about 87ć RPS. In practice, about 10 SRProxy machines are

needed to provide sufficient buffers for failure and unexpected
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Figure 11: E-Comm’s P90 latency with and without SRProxy.
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load spikes. After the evaluation, we decided to enable SR-

Proxy for E-Comm because the 10 SRProxy machines per

region would allow us to save 33% of E-Comm’s hardware

capacity by routing 5% of its traffic across regions while still

keeping its latency within its SLO.

Key-value store. This distributed key-value store has 1.5

million data shards. Accordingly, its service-discovery in-

formation includes a large shard map for these 1.5 million

shards (see an example in Figure 7). It takes a lot of memory

on the key-value store’s clients to cache this large service’s

full service-discovery information. We evaluated enabling

SRProxy to offload the service-discovery cache from the client

machines to SRProxy, and noted that it saved on the client

machines 250MB memory at P99. Moreover, SRProxy helped

with connection reuse and thus latency. The clients have poor

connection reuse due to the huge fanout of requests to many

different shards hosted by different servers. Shared SRProxies

could drastically improve connection reuse and reduce latency

by 27% on average. However, due to the key-value store’s high

RPS, it would need 1,500 SRProxy machines. Eventually, we

decided that the cost would not sufficiently justify the benefits

and hence did not use SRProxy to route its traffic.

4.3 Load Balancing

SR performs load balancing both within a region and across

regions. We evaluate both scenarios in this section.

4.3.1 Same-Region Load Balancing

To evaluate same-region load balancing, we selected 15 rep-

resentative services that produce significant traffic within a

region. 10 of these services are unsharded and 5 are sharded.

We measured each service’s average production load (pending

requests for unsharded services and CPU usage for sharded

services) across its servers and normalized the load by its

mean. To evaluate whether the load evenly spreads across

Figure 12: Load balancing within a region for unsharded (U)

and sharded (S) services. The top group shows the normal-

ized average load and the bottom two groups show the load’s

coefficient of variation (CV) across servers.

a service’s different servers, we calculated the coefficient of

variation (CV) for each service. Figure 12 summarizes the

results. We observe that the load is concentrated within a nar-

row band for all services. Across all 15 services, the median

CV is low Č50ÿĒ = 0.18 and Č 95ÿĒ = 0.6. In particular, the

CV for unsharded services is always low (Č50ċ
ÿĒ

= 0.13 and

Č95ċ
ÿĒ

= 0.20), indicating that SR effectively balances the

load across their servers.

The CV for sharded services is higher (Č50ĉ
ÿĒ

= 0.44 and

Č95ĉ
ÿĒ

= 0.61), indicating that the load is less balanced. This

is because some shards are hot (receiving a lot of traffic) while

others are cold (receiving little traffic), due to the nature of data

stored in the shards. As a result, even if SR perfectly routes

RPC requests to different replicas of the shards, the load on the

servers that host different shards may still be unbalanced. To

further balance the load, it may be necessary to migrate shard

replicas across containers and/or create additional replicas of

the hot shards. However, these operations may have a high

overhead, so our shard manager [34] performs these operations

only enough to prevent server overload without attempting to

perfectly balance the load. Overall, these data show that SR

can use a single service mesh to balance load for both sharded

and unsharded services.

4.3.2 Cross-Region Load Balancing

Locality ring. A service’s locality-ring configuration

(§ 3.4.1) guides SR to route requests to nearby servers when

appropriate. To assess its effectiveness, we measure P90 la-

tencies for requests that fall into different locality rings. Most

services (63.8%) use SR’s default locality-ring configuration:[
same region | neighboring regions | same continent | global

]
.

Interestingly, 15.4% of services simply set their locality ring

as
[
global

]
, meaning that they have no locality preference.

Most of these services are not user facing and not sensitive to

latency, but instead care more about availability. 9.7% of ser-

vices set their locality ring as
[
same region | global

]
, meaning

that they prefer a request being served in the local region, but

if that’s impossible, they prefer the request being served by a

more lightly loaded server in any region, as opposed to a more

heavily loaded server in a nearby region. The remaining 11.1%

of services use their own custom locality-ring configuration.

We found that the P90 latency is 12/83/201/262 ms

for requests that are served by servers in the

Region / NeighboringRegions / Continent / Global rings,

respectively. This confirms the correct behavior that the inner

rings exhibit lower latencies than the outer rings. Moreover,

the latency jump at each expanded ring level is significant,

indicating that fine-grained locality management is helpful.

Initially, our default ring configuration was
[
same region|

same continent | global
]
. As more datacenter regions were

added to our infrastructure, the latency difference between

regions in the same continent became more significant. Then

we were able to easily introduce a new ring level, neighboring

regions, thanks to the flexibility offered by locality rings.
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Ring 3

Ring 1

Ring 2

Ring 4

Figure 13: xRS shapes a service’s traffic across several regions

to prevent overloads.

Cross-region load spillover. xRS computes a cross-region

routing table per service to guide L7 routers’ routing deci-

sions (§3.4.1). To evaluate its effectiveness, we choose a

service that does newsfeed fetching and ranking for one of

our main products. The service uses the following locality-

ring thresholds,
[
ring1:75% | ring2:80% | ring3:85%

| ring4:90%
]
, where the second number (e.g., 75%) in the

pairs is a load threshold. It means that if the measured load

in an inner ring exceeds the threshold, xRS should compute

a new routing table to shift some traffic from the inner ring

to the next-level outer ring in order to reduce load in the in-

ner ring. The load metric for the service is CPU utilization

averaged across the service’s all servers in a region.

In Figure 13, we report a real incident that happened to

the service in production, which was not conducted by us

just for the sake of experiment. The figure shows the average

load across several regions for the service in the span of 40

minutes. We observe that xRS was able to shift traffic to

maintain the load well below the ring1 load threshold of 75%

for most regions except Region 0 during a short spike.

At 09:53 AM, Region 0 exhibited high load (81.2%), which

exceeded its ring2 load threshold (80%). xRS evaluated shift-

ing some traffic to Region 0’s ring2 regions (i.e., Regions 2,

8, and 10) and chose Region 2 as the target because it had the

lowest load. xRS calculated that by shifting some traffic from

Region 0 to Region 2, the load of Region 0 would fall below

the load threshold. This resulted in a new routing table which

reduced Č0,0 traffic by 5.35% and set Č0,2 = 5.35%, meaning

that 5.35% of requests originating from Region 0 should be

routed to Region 2. Then, the load of Region 0 fell to 70.9%

and subsequently to 65.47% at 09:54 AM. The corresponding

load increase in Region 2 was insignificant because the service

had a large capacity footprint in Region 2.

At 09:55 AM, the load of Region 0 spiked again to 92.83%

and then to 96.69% at 09:56 AM, which was above the ser-

vice’s ring4 threshold (90%). In response, xRS reduced Č0,0
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(b) Control plane (i.e., service-discovery updates).

Figure 14: Traffic for unsharded and sharded services, exclud-

ing memcache.

by 12% at first (99.24%³ 86.92%) and then by another 13%

(86.92%³ 74.38%). The removed traffic was again added to

Region 2 alone as it was the least loaded region among all

regions in Region 0’s ring4. Č0,2 increased first from 0.76% to

13.08% and then from 13.08% to 25.62%. These adjustments

helped the load in Region 0 to drop to 64.34% and the region

became healthy again at 09:57 AM.

Overall, the whole process above was fully automated by

xRS without any manual intervention. It demonstrates that

xRS is effective in dynamically managing cross-region traffic.

4.4 Sharded Services

Currently, our fleet runs hundreds of sharded services [34].

Although they only account for about 3% of our tens of thou-

sands of services, they generate more traffic than the other

97% unsharded services, because many sharded services are

among our largest and highest traffic services. Specifically,

most of the largest services in Figures 8 and 9 are sharded,

and the two services studied in §4.2.2 are both sharded. To

give a sense of scale, our fleet has millions of containers for

unsharded services, and hundreds of millions of shard replicas.

Figure 14(a) shows that the aggregate RPS for all sharded

services is 212% of the aggregate RPS for all unsharded ser-

vices. Our memcache [38] is sharded and has the highest RPS

among all our services, but it is excluded from the comparison

in Figure 14(a) to avoid overshadowing other services. The

RPS for memcache alone is 975% of the aggregate RPS for

all unsharded services. Although memcache has a high RPS,

each of its requests is very lightweight and hence memcache

servers do not account for a large fraction of our fleet capacity.

Figure 14(b) shows that the aggregate control-plane traffic to
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update service-discovery information for all sharded services

is 240% of the aggregate traffic for all unsharded services. This

is because sharded services more frequently migrate shards

across servers to balance load.

Overall, the traffic for sharded services overwhelmingly

dominates both the data plane and the control plane of our

service mesh, which highlights the importance of providing

first-class built-in support for sharded service in a service

mesh. Excluding memcache, RPCs for sharded services ac-

count for 68% of all RPCs, rising to 92% when memcache is

included (as our memcache is sharded). Despite the impor-

tance of sharded services, all existing general-purpose service

meshes ignore sharded services and exclusively focus on un-

sharded services. Our key insight in supporting sharded and

unsharded services in a single framework is to define a shard-

ing abstraction between SR and services to enforce separation

of concerns so that SR can route traffic without knowing a

service’s internal application logic.

5 Limitations of SRLib and Our Solutions

In this section, we discuss several limitations of SRLib and

how we address them.

Dynamic policy updates. In addition to load balancing, SR

offers a large set of service-mesh features such as overload

protection [39], observability [1], distributed tracing [32], and

encryption. These features are managed through dynamic

policy updates, which need to be executed by L7 routers in

near-real-time. Without good tooling support, deploying pol-

icy updates for a library embedded in applications could be

harder than for standalone sidecar proxies. At Meta, this prob-

lem is solved by a powerful configuration management system

called Configerator [52]. The policies for both SRProxy and

SRLib are managed in the same way. When a policy changes,

Configerator propagates the change and sends an upcall to

SRLib embedded in applications. SRLib then applies the new

policy immediately, without restarting the application.

Source code modification. One disadvantage of SRLib is

that it requires code changes to services. Traditional RPCs

use an IP address and a port number to obtain an RPC client,

whereas SRLib obtains an RPC client using a service name.

The code example below shows that it is straightforward to

modify a traditional RPC framework to use SRLib.

TraditionalRPCClient *cln = get_client(IP, port);

cln->foo(); // Invoke RPC for foo().

SRClient *cln2 = SR_get_client("service_name");

cln2->foo(); // Invoke RPC for foo().

Moreover, source-code modification related to RPC is not

unique to SRLib, and is widely adopted by hyperscalers. Re-

gardless of how routing is done, as long as a hyperscaler’s

RPC framework does not entirely rely on the standard but slow

DNS for service discovery, they have to modify their appli-

cation code to integrate with their custom service-discovery

system. Examples of this include Google’s Borg Name Ser-

vice [55], Netflix’s Eureka [17], LinkedIn’s Rest.li Dynamic

Discovery [49], Twitter’s Finagle [19], Uber’s Hyperbahn [27],

and Airbnb’s Synapse [3]. The prevalence of custom service-

discovery systems, which often require source-code modifica-

tions to use, suggests that this approach is practical as long as

the changes are simple and limited to RPC’s narrow interface.

Library code deployment. Deploying a new version of SR-

Lib is more difficult than deploying a new version of a sidecar

proxy. This is because SRLib is compiled into tens of thou-

sands of services, each with its own deployment schedule.

Furthermore, in theory, it is possible that some services may

not be updated for a long time, resulting in their continued

use of an outdated version of SRLib. At Meta, this problem

is solved by a powerful continuous software deployment tool

called Conveyor [25]. With the help of Conveyor, 97% of

the services at Meta are configured to deploy automatically

without manual intervention, whether it is on a daily or weekly

basis, or whenever a code update successfully passes all tests.

Moreover, due to reasons beyond SR, it is a company mandate

for all services to be deployed regularly, which ensures that

services run with a recent version of SRLib.

Bugs in SRLib. If SRLib’s new code has a bug, it can be
difficult to instantly roll back all services. To mitigate this risk,
every major code change or new feature in SRLib is gated by a
configuration parameter that can be toggled live in production
via Configerator [52], as shown in the example below, without
requiring a software deployment or process restart.

// Introduce a new FEATURE_X in the SRLib code.

if (check_gate(FEATURE_X)) {

// New code path...

} else {

// Old code path...

}

In the example above, when FEATURE_X is updated on a cen-

tral server via Configerator, the new parameter value is prop-

agated to all SRLib instances within seconds. SRLib’s next

invocation to check_gate(FEATURE_X) returns the updated

parameter value and switches the code path accordingly, with-

out requiring a restart of the application process.

After the above new code is released into production,

check_gate(FEATURE_X) defaults to false, as if the new code

path does not exist. Configerator then manages a canary test-

ing process where it selectively enables the new code path

for a small number of replicas of a few services by setting

check_gate(FEATURE_X) to true. If the test is successful, the

new code path is gradually enabled for more services. If a bug

is encountered, FEATURE_X can be instantly disabled for

all services via a configuration change. Overall, incremental

rollouts of new SRLib code gated by configuration changes

allow us to mitigate the risk of SRLib bugs.
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Summary. At Meta, managing widely deployed libraries

(WDL) such as SRLib is largely a solved problem thanks

to the help of Configerator [52] and Conveyor [25]. These

tools also help manage about a dozen other WDLs, so the

problem is not unique to SRLib. However, we acknowledge

that, even with the help of Configerator and Conveyor, it is still

more challenging to develop, deploy, and manage SRLib than

sidecar or remote proxies because SRLib is linked into every

service. Although SR supports both SRProxy and SRLib,

we prioritize the cost savings of hundreds of thousands of

machines that come with the routing-library approach, over the

simplicity that comes with the proxy approach. Our experience

in production demonstrates that the routing-library approach

is not only cost-effective but also practical, even in highly

complex environments, despite its challenges.

6 Related Work

There is an array of works from both academia and industry

discussing routing and load balancing in datacenter environ-

ments, at either layer-3/4 [5,8,12,14,18,21,40,44,46] or layer

7 [3, 5, 15, 19, 20, 23, 26, 30, 36, 37, 43, 48]. Layer-3/4 load

balancers can be implemented either in hardware [8, 21, 40]

or in software [5, 14, 22, 28, 44, 46, 48]. As a layer-3 solu-

tion, anycast [56] can route requests to nearby servers, but

it does not consider the servers’ dynamic load. As shown in

Figure 14, the majority of our traffic is for sharded services,

which cannot be handled by these layer-3/4 solutions as they

do not understand application shards.

More relevant to SR are layer-7 (L7) service-mesh solutions

that route requests across microservices. L7 routing can in-

spect application-level information, enabling more advanced

load balancing. L7 routing can be performed by a group of

dedicated proxies [3, 5, 15, 20]. However, using remote prox-

ies comes with significant latency and hardware costs, so SR

limits the use of SRProxy to around 1% of its traffic, only for

services that can benefit the most from connection reuse.

More related to SRLib, which routes 99% of our traffic, are

service meshes that distribute L7 decisions closer to the clients.

eBPF [35] is efficient but is limited in its L7 capabilities. For

example, Cilium [29]’s eBPF program can only handle L3/L4

protocols, and it still needs to use a sidecar proxy to handle L7

protocols. RPC frameworks such as Thrift [51], gRPC [23],

and Finagle [19] are the foundations of service meshes, but

they do not offer the complete capabilities needed for a geo-

distributed service mesh, such as global-traffic-aware routing.

To address these limitations, more complex service

meshes [15, 30, 36, 37] have been proposed. Envoy [15] is

typically deployed as a sidecar proxy, and Istio [30] provides

a control plane to manage Envoy proxies. We compare dif-

ferent service meshes in Table 2 and show that the sidecar

approach is easy to deploy, but increases latency and incurs

significant hardware costs. Zhu et al. [57] show that Istio adds

92% extra CPU usage and increases the latency by 185% [57].

mRPC [7] confirms that a sidecar increases the P99 RPC la-

tency by 180% and decreases throughput by 44%. SR takes

the routing-library approach to avoid the overhead of a proxy.

mRPC [7] eliminates the double marshaling overhead of the

sidecar approach, by using shared memory to communicate

between the application and the sidecar and by not performing

marshaling in the application. However, this approach requires

modifying applications to allocate memory for RPC arguments

from a heap in shared memory. This can be difficult since

memory allocations tend to scatter throughout an application

and sometimes occur in system libraries such as strdup()

that cannot be easily modified.

While Istio offers locality-aware routing based on static

rules [31], SR dynamically computes a per-service global

routing table based on global traffic. Google Slicer [2] sup-

ports service discovery for sharded services, but this function

is not offered by the underlying service mesh out of the box.

7 Conclusion

We presented Meta’s global service mesh, called ServiceR-

outer (SR). SR differs from other publicly known service

meshes in several significant ways. First, SR scales signifi-

cantly beyond previously published work, currently processing

tens of billions of requests per second. This is achieved by mas-

sively replicating the routing information base (RIB) to guide

L7 routers to self-configure and self-manage in a decentralized

manner. Second, SR minimizes hardware costs by providing

the service-mesh function out of an embedded routing library

for 99% of its traffic, in contrast to the common approach of

using sidecar or remote proxies alone. Third, SR introduces

the concept of locality rings to simultaneously minimize RPC

latency and balance load across geo-distributed datacenter

regions. Finally, SR supports both sharded and replicated

services through a common underlying routing framework.

Our ongoing work is focused on improving global rout-

ing in accordance with global capacity management [16] and

enhancing overload protection to ensure services gracefully

degrade in the event of large-scale disasters [39].
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