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Huye et al.  Lifting the veil on Meta's microservice architecture: Analyses of topology and request workflows. USENIX ATC ‘23
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RPC 
Frameworks

• No Advanced Load Balancing

• Need external support for service 
discovery

• Examples: gRPC, Thrift
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• [HW COST] How to minimize HW cost?
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O(109)
RPS

Istio: 0.35vCPU for O(103) rps

1,750,000 AWS t4g.small VMs for 10B rps
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• [RPC LATENCY & LB] How to 
simultaneously minimize RPC latency and 
load balance across geo-distributed 
hosts?

뺻 Sidecars add extra latency
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Zhu et al show that Istio

• increases the latency by 185%
Zhu et al. Dissecting Service Mesh Overheads. 
In arXiv preprint arXiv:2207.00592, 2022. 

mRPC shows that a sidecar approach:

• increases P99 RPC latency by 180%
Chen, et al. Remote procedure call as a managed 
system service. NSDI ‘23
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• [SHARDED SERVICES] Support for 
shared services NOT COVERED
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03 KEY DESIGN CONCEPTS

RIB

Decentralize the unscalable part of the control 
plane in order to scale out.

RIB

• Service Discovery Info

• Per-service routing config

• Cross-region service routing info
Routing Information Base

CONTROLLERS

• Independent controllers execute different 
functions such as registering services and 
generating a per-service cross-region 
routing table.
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RIB

• Service Discovery Info
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D
at

a 
D

is
tri

bu
tio

n 
La

ye
r

log_d config_d RIB_d

mini-
RIB

Routing Information Base

log_d config_d RIB_d

mini-
RIB

log_d config_d RIB_d

mini-
RIB

CONTROLLERS

• Independent controllers execute different 
functions such as registering services and 
generating a per-service cross-region 
routing table.

• The data distribution layer massively 
replicates the RIB so that there are 
sufficient RIB replicas to handle read 
traffic from millions of proxies.

• Each proxy self-configures and self-
manages without the control plane’s direct 
involvement.
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03 KEY DESIGN CONCEPTS

Versatility
Controllers are agnostic to the L7 architecture.

12
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SRLib
Provide the service-mesh functions out of a 
library that is directly linked into the RPC 
client’s executable

• Eliminates side car latency overhead

Run a separate RIBDaemon on the client 
machine to cache miniRIB.

RPC traffic routed 
through SRLib.99%



03 KEY DESIGN CONCEPTS

LATENCY RINGS 
AND CROSS-
REGION 
ROUTING
SR strives to simultaneously minimize RPC 
latency and balance load across global 
regions.

• SR introduces the concept of latency rings 
to minimize latency.

• SR collects per-service global traffic and 
load information, computes a per-service 
cross-region routing table, and 
disseminate it to L7 routers to guide their 
local routing decisions.

Ring1 : 5ms
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Ring2 : 35ms

Ring3 : 80ms

Ring4 : ∞

D

Ring1 : 5ms | Ring2 : 35ms | Ring3 : 80ms | Ring4 : ∞
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04    ServiceRouter Architecture
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05 EVALUATION

Scalability
Overall scale

• Regions

• Routers/Clients/Servers

• Throughput
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B/sec
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05 EVALUATION

Scalability
RIB - Routing Information Base

• RIB Replicas

• RIB Write bandwidth

• RIB Write throughput
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05 EVALUATION

Cost
METHODOLOGY

• Metrics: P50 avg request latency; CPU 
Instructions per request

• Designs

뺻 Baseline: Thrift RPC

뺻 SRLib

뺻 Remote SRProxy

• Simulated Payload: 

뺻 Production avg request and avg 
response size

뺻 O(103) B

• 100K requests

• 3 trials per design
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80.1%
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Cross-Region
Load Shift

• Real-world Example
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• 9:53 —> Region 0 Load = 81.2%

뺻 xRS Traffic Shifts

뺻 R0 -5.35%

뺻 R0 to R2 +5.35%

65.4

• 9:54 —> Region 0 Load = 65.47%

96.6

• 9:56 —> Region 0 Load = 96.69%

뺻 xRS Traffic Shifts

뺻 R0 -25%

뺻 R0 to R2 +25%

64.3

• 9:57 —> Region 0 Load = 64.34%



06    Summary

ServiceRouter’s massive RIB replication allows decentralizing L7 
router management and to scale to millions of routers and 
proxies.

ServiceRouter routes 99% of the traffic with an optimized 
embedded library approach with astounding HW savings.

ServiceRouter’s source-based locality rings and xRS strike a 
balance between latency wins and load balancing.

Built-in support for sharded services which account for 68% of 
our RPCs [not covered in this talk].
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