
HYPERSCALE AND MINIMAL COST SERVICE MESH AT META

ServiceRouter

Harshit

Saokar

Soteris

Demetriou

Nick

Magerko

Max

Kontorovich

Josh

Kirstein

Margot

Leibold

Dimitrios

Skarlatos

Hitesh

Khandelwal

Chunqiang

Tang1 11 11,2 1 1,3 1 1

1 2 3

01 Background & Motivation

2

01 Background & Motivation

Machine 1 Machine 2 Machine 3 Machine 4

Service AService A Service B Service B

3

Huye et al. Lifting the veil on Meta's microservice architecture: Analyses of topology and request workflows. USENIX ATC ‘23

Machine 2 Machine 3 Machine 4

Service BService A Service B

RPC
Frameworks

• No Advanced Load Balancing

• Need external support for service
discovery

• Examples: gRPC, Thrift

01 Background & Motivation

4

Machine 1 Machine 2 Machine 3 Machine 4

CONTROL PLANE

Service A Service BService A Service B

REGION A

Service B

REGION B

L7 ProxyL7 ProxyL7 ProxyL7 Proxy L7 Proxy

Machine 5

01 Background & Motivation: Service Mesh

5

01 BACKGROUND & MOTIVATION

Service Mesh
Challenges

• [SCALABILITY] How can we scale
service discovery to O(106) clients and
proxies? Service

Proxy

O(106)

O(109)

Service

Proxy

Service

Proxy

Service

Proxy

Service

Proxy

6

Service Mesh
Challenges

• [SCALABILITY] How can we scale
service discovery to O(106) clients and
proxies?

01 BACKGROUND & MOTIVATION

• [HW COST] How to minimize HW cost?

Service

Proxy

Service

ProxyService

Proxy

Service

Proxy
Service

Proxy

O(109)
RPS

Istio: 0.35vCPU for O(103) rps

1,750,000 AWS t4g.small VMs for 10B rps

7

Service Mesh
Challenges

• [SCALABILITY] How can we scale service
discovery to O(106) clients and proxies?

• [HW COST] How to minimize HW cost?

01 BACKGROUND & MOTIVATION

Machine 2 Machine 3

Service B

L7 Proxy

Service A

L7 Proxy

• [RPC LATENCY & LB] How to
simultaneously minimize RPC latency and
load balance across geo-distributed
hosts?

뺻 Sidecars add extra latency

8

Zhu et al show that Istio

• increases the latency by 185%
Zhu et al. Dissecting Service Mesh Overheads.
In arXiv preprint arXiv:2207.00592, 2022.

mRPC shows that a sidecar approach:

• increases P99 RPC latency by 180%
Chen, et al. Remote procedure call as a managed
system service. NSDI ‘23

01 BACKGROUND & MOTIVATION

Service Mesh
Challenges

• [SCALABILITY] How can we scale service
discovery to O(106) clients and proxies?

• [HW COST] How to minimize HW cost?

• [RPC LATENCY & LB] How to
simultaneously minimize RPC latency and
load balance across geo-distributed
hosts?

뺻 Sidecars add extra latency

뺻 O(10-104) hosts per service

뺻 P90 cross-region latency: 106ms 0%
10%
20%
30%
40%
50%
60%
70%
80%
90%

100%

0 15 30 45 60 75 90 105 120 135 150 165

CD
F

RTT across different regions (ms)

P90

P99

P90

0%

C
D
F

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

Number of Hosts (logscale)
100 101 102 103 104

9

01 BACKGROUND & MOTIVATION

Service Mesh
Challenges

• [SCALABILITY] How can we scale service
discovery to O(106) clients and proxies?

• [HW COST] How to minimize HW cost?

• [RPC LATENCY & LB] How to
simultaneously minimize RPC latency and
load balance across geo-distributed
hosts?

뺻 Sidecars add extra latency

뺻 O(10-104) hosts per service

뺻 P90 cross-region latency: 106ms

Machine 1 Machine 2 Machine 3 Machine 4

CONTROL PLANE

Service A Service BService A Service B

REGION A

Service B

REGION B

L7 ProxyL7 ProxyL7 ProxyL7 Proxy L7 Proxy

Machine 5

LO
AD

LO
AD

LO
AD

9

01 BACKGROUND & MOTIVATION

Service Mesh
Challenges

• [SCALABILITY] How can we scale service
discovery to O(106) clients and proxies?

• [HW COST] How to minimize HW cost?

• [RPC LATENCY & LB] How to
simultaneously minimize RPC latency and
load balance across geo-distributed
hosts?

뺻 Sidecars add extra latency

뺻 O(10-104) hosts per service

뺻 P90 cross-region latency: 106ms

Machine 1 Machine 2 Machine 3 Machine 4

CONTROL PLANE

Service A Service BService A Service B

REGION A

Service B

REGION B

L7 ProxyL7 ProxyL7 ProxyL7 Proxy L7 Proxy

Machine 5

LO
AD

LO
AD

LO
AD

9

• [SHARDED SERVICES] Support for
shared services NOT COVERED

03 ServiceRouter
KEY DESIGN CONCEPTS

10

03 KEY DESIGN CONCEPTS

RIB

Decentralize the unscalable part of the control
plane in order to scale out.

RIB

• Service Discovery Info

• Per-service routing config

• Cross-region service routing info
Routing Information Base

CONTROLLERS

• Independent controllers execute different
functions such as registering services and
generating a per-service cross-region
routing table.

11

03 KEY DESIGN CONCEPTS

RIB

Decentralize the unscalable part of the control
plane in order to scale out.

RIB

• Service Discovery Info

• Per-service routing config

• Cross-region service routing info

D
at

a
D

is
tri

bu
tio

n
La

ye
r

Routing Information Base

CONTROLLERS

• Independent controllers execute different
functions such as registering services and
generating a per-service cross-region
routing table.

• The data distribution layer massively
replicates the RIB so that there are
sufficient RIB replicas to handle read
traffic from millions of proxies.

11

Service A

SR Sidecar

Machine 3

Service A

SR Sidecar

Machine 2

Service A

SR Sidecar

Machine 1

03 KEY DESIGN CONCEPTS

RIB

Decentralize the unscalable part of the control
plane in order to scale out.

RIB

• Service Discovery Info

• Per-service routing config

• Cross-region service routing info

D
at

a
D

is
tri

bu
tio

n
La

ye
r

log_d config_d RIB_d

mini-
RIB

Routing Information Base

log_d config_d RIB_d

mini-
RIB

log_d config_d RIB_d

mini-
RIB

CONTROLLERS

• Independent controllers execute different
functions such as registering services and
generating a per-service cross-region
routing table.

• The data distribution layer massively
replicates the RIB so that there are
sufficient RIB replicas to handle read
traffic from millions of proxies.

• Each proxy self-configures and self-
manages without the control plane’s direct
involvement.

11

03 KEY DESIGN CONCEPTS

Versatility
Controllers are agnostic to the L7 architecture.

12

Server

Client

SRProxy

Machine

Routing Info Base (RIB)

miniRIB

Server

Server

ServerClient

Machine

Routing Info Base (RIB)

SRProxyminiRIB

Server

Server

Client

Server

Client

RIBDaemon

Machine

Routing Info Base (RIB)

miniRIB

Server

Server

SRLib

Server

Routing Info Base (RIB)

SRLookasideServiceminiRIB

Server

Server

Machine

(c) SRSidecarProxy

Routing metadata traffic Application RPC traffic

(d) SRRemoteProxy(a) SRLib (b) SRLookaside

Client SRLib

Client SRLib

03 KEY DESIGN CONCEPTS

Versatility
Controllers are agnostic to the L7 architecture.

12

Server

Client

SRProxy

Machine

Routing Info Base (RIB)

miniRIB

Server

Server

ServerClient

Machine

Routing Info Base (RIB)

SRProxyminiRIB

Server

Server

Client

Server

Client

RIBDaemon

Machine

Routing Info Base (RIB)

miniRIB

Server

Server

SRLib

Server

Routing Info Base (RIB)

SRLookasideServiceminiRIB

Server

Server

Machine

(c) SRSidecarProxy

Routing metadata traffic Application RPC traffic

(d) SRRemoteProxy(a) SRLib (b) SRLookaside

Client SRLib

Client SRLib

SRLib
Provide the service-mesh functions out of a
library that is directly linked into the RPC
client’s executable

• Eliminates side car latency overhead

Run a separate RIBDaemon on the client
machine to cache miniRIB.

RPC traffic routed
through SRLib.99%

03 KEY DESIGN CONCEPTS

LATENCY RINGS
AND CROSS-
REGION
ROUTING
SR strives to simultaneously minimize RPC
latency and balance load across global
regions.

• SR introduces the concept of latency rings
to minimize latency.

• SR collects per-service global traffic and
load information, computes a per-service
cross-region routing table, and
disseminate it to L7 routers to guide their
local routing decisions.

Ring1 : 5ms

A B

C

E

Ring2 : 35ms

Ring3 : 80ms

Ring4 : ∞

D

Ring1 : 5ms | Ring2 : 35ms | Ring3 : 80ms | Ring4 : ∞

14

03 KEY DESIGN CONCEPTS

LATENCY RINGS
AND CROSS-
REGION
ROUTING
SR strives to simultaneously minimize RPC
latency and balance load across global
regions.

• SR introduces the concept of latency rings
to minimize latency.

• SR collects per-service global traffic and
load information, computes a per-service
cross-region routing table, and
disseminate it to L7 routers to guide their
local routing decisions.

Ring1 : 5ms

A B

C

E

Ring2 : 35ms

Ring3 : 80ms

Ring4 : ∞

D

Ring1 : 5ms | Ring2 : 35ms | Ring3 : 80ms | Ring4 : ∞

LO
AD LO

AD
LO

AD

Servers in Ring1 are overloaded!

14

03 KEY DESIGN CONCEPTS

LATENCY RINGS
AND CROSS-
REGION
ROUTING
SR strives to simultaneously minimize RPC
latency and balance load across global
regions.

• SR introduces the concept of latency rings
to minimize latency.

• SR collects per-service global traffic and
load information, computes a per-service
cross-region routing table, and
disseminate it to L7 routers to guide their
local routing decisions.

Ring1 : 5ms Ring2 : 35ms Ring3 : 80ms Ring4 : ∞: 55% : 65% : 80% : ∞|| |

Load threshold for Ring1

Cross-region Routing Service (xRS)

LOAD RPS

15

04 ServiceRouter
OVERALL ARCHITECTURE

16

04 ServiceRouter Architecture

Logging Configerator Global Registry Service (GRS)

Twine
Shard

Manager
cross-region Routing Service (xRS)

Routing
Config

Cross-
region
Latency
Config

Latency Monitoring
Service

RIB

SRProxy Service C

perf_d

Service B

SRLib

log_d config_d RIB_d

Service A

SRLib

log_d config_d RIB_d

Machine 1 Machine 2 Machine 3 Machine 4

config_d

D
AT

A
PL

AN
E

C
O

N
TR

O
L

PL
AN

E

RIB_d

OSDI ‘20 SOSP ‘21

SOSP ‘15

log_d

17

05 ServiceRouter
EVALUATION

18

05 EVALUATION

Scalability
Overall scale

• Regions

• Routers/Clients/Servers

• Throughput

O(10)

Regions

O(106)

L7 Routers
Clients

O(109)

RPS

O(1014)

B/sec

19

05 EVALUATION

Scalability
RIB - Routing Information Base

• RIB Replicas

• RIB Write bandwidth

• RIB Write throughput

RIB

D
at

a
D

is
tri

bu
tio

n
La

ye
r

O(109)
Bytes

O(1012)
Bytes

}
O(10)

Paxos
Acceptors

} O(103)

Paxos
Learners

!(102)
commits/
sec

WRITE

!(106)
B/sec
WRITE

20

05 EVALUATION

Cost
METHODOLOGY

• Metrics: P50 avg request latency; CPU
Instructions per request

• Designs

뺻 Baseline: Thrift RPC

뺻 SRLib

뺻 Remote SRProxy

• Simulated Payload:

뺻 Production avg request and avg
response size

뺻 O(103) B

• 100K requests

• 3 trials per design

CPU Instructions/Request

0

150000

300000

450000

600000 273.4%

PROXY

CLIENT

Thrift Client SRLib Client SRProxy (Client + Proxy)

80.1%

107.4%

21

Cross-Region
Load Shift

• Real-world Example

05 EVALUATION

22

Ring 3

Ring 1

Ring 2

Ring 4

Cross-Region
Load Shift

• Real-world Example

05 EVALUATION

25

Ring 4

Ring 3

Ring 2

Ring 1

Region 0
Region 2

30

40

50

60

70

80

90

100

Lo
ad

Time
09:50 09:55 10:00 10:05 10:10 10:15 10:20 10:25 10:30

81.2

• 9:53 —> Region 0 Load = 81.2%

뺻 xRS Traffic Shifts

뺻 R0 -5.35%

뺻 R0 to R2 +5.35%

65.4

• 9:54 —> Region 0 Load = 65.47%

96.6

• 9:56 —> Region 0 Load = 96.69%

뺻 xRS Traffic Shifts

뺻 R0 -25%

뺻 R0 to R2 +25%

64.3

• 9:57 —> Region 0 Load = 64.34%

06 Summary

ServiceRouter’s massive RIB replication allows decentralizing L7
router management and to scale to millions of routers and
proxies.

ServiceRouter routes 99% of the traffic with an optimized
embedded library approach with astounding HW savings.

ServiceRouter’s source-based locality rings and xRS strike a
balance between latency wins and load balancing.

Built-in support for sharded services which account for 68% of
our RPCs [not covered in this talk].

HYPERSCALE AND MINIMAL COST SERVICE MESH AT META

ServiceRouter

26

Soteris Demetriou | s.demetriou@imperial.ac.uk

mailto:s.demetriou@imperial.ac.uk

Soteris Demetriou | s.demetriou@imperial.ac.uk

mailto:s.demetriou@imperial.ac.uk

